Loading [MathJax]/jax/output/CommonHTML/jax.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 6, Pages 697–706
DOI: https://doi.org/10.1134/S1560354716060095
(Mi rcd219)
 

This article is cited in 5 scientific papers (total in 5 papers)

Knauf’s Degree and Monodromy in Planar Potential Scattering

Nikolay Martynchuk, Holger Waalkens

Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands
Citations (5)
References:
Abstract: We consider Hamiltonian systems on (TR2,dqdp) defined by a Hamiltonian function H of the “classical” form H=p2/2+V(q). A reasonable decay assumption V(q)0,q, allows one to compare a given distribution of initial conditions at t= with their final distribution at t=+. To describe this Knauf introduced a topological invariant deg(E), which, for a nontrapping energy E>0, is given by the degree of the scattering map. For rotationally symmetric potentials V(q)=W(q), scattering monodromy has been introduced independently as another topological invariant. In the present paper we demonstrate that, in the rotationally symmetric case, Knauf's degree deg(E) and scattering monodromy are related to one another. Specifically, we show that scattering monodromy is given by the jump of the degree deg(E), which appears when the nontrapping energy E goes from low to high values.
Keywords: Hamiltonian system, Liouville integrability, nontrapping degree of scattering, scattering monodromy.
Received: 22.08.2016
Accepted: 17.11.2016
Bibliographic databases:
Document Type: Article
MSC: 37J35, 70F99, 70H05
Language: English
Citation: Nikolay Martynchuk, Holger Waalkens, “Knauf’s Degree and Monodromy in Planar Potential Scattering”, Regul. Chaotic Dyn., 21:6 (2016), 697–706
Citation in format AMSBIB
\Bibitem{MarWaa16}
\by Nikolay Martynchuk, Holger Waalkens
\paper Knauf’s Degree and Monodromy in Planar Potential Scattering
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 6
\pages 697--706
\mathnet{http://mi.mathnet.ru/rcd219}
\crossref{https://doi.org/10.1134/S1560354716060095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390094200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85006248678}
Linking options:
  • https://www.mathnet.ru/eng/rcd219
  • https://www.mathnet.ru/eng/rcd/v21/i6/p697
  • This publication is cited in the following 5 articles:
    1. N. Martynchuk, H. W. Broer, K. Efstathiou, “Recent advances in the monodromy theory of integrable Hamiltonian systems”, Indag. Math.-New Ser., 32:1 (2021), 193–223  crossref  mathscinet  isi  scopus
    2. Martynchuk N. Broer H.W. Efstathiou K., “Hamiltonian Monodromy and Morse Theory”, Commun. Math. Phys., 375:2 (2020), 1373–1392  crossref  mathscinet  isi  scopus
    3. M. Kobayashi, K. Yamada, “Spacecraft orbit around two fixed bodies”, Acta Astronaut., 160 (2019), 615–624  crossref  isi  scopus
    4. N. Martynchuk, H. R. Dullin, K. Efstathiou, H. Waalkens, “Scattering invariants in Euler's two-center problem”, Nonlinearity, 32:4 (2019), 1296–1326  crossref  mathscinet  zmath  isi  scopus
    5. I. Chiscop, H. R. Dullin, K. Efstathiou, H. Waalkens, “A Lagrangian fibration of the isotropic 3-dimensional harmonic oscillator with monodromy”, J. Math. Phys., 60:3 (2019), 032103  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:270
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025