Abstract:
The Chaplygin separation equation for a rolling axisymmetric ball has an algebraic expression for the effective potential V(z=cosθ,D,λ) that is difficult to analyze. We simplify this expression for the potential and find a 2-parameter family for when the potential becomes a rational function of z=cosθ. Then this separation equation becomes similar to the separation equation for the heavy symmetric top. For nutational solutions of a rolling sphere, we study a high frequency ω3-dependence of the width of the nutational band, the depth of motion above V(zmin,D,λ) and the ω3-dependence of nutational frequency 2πT.
Keywords:
rigid body, rolling sphere, integrals of motion, elliptic integrals, tippe top.
Citation:
Nils Rutstam, “High Frequency Behavior of a Rolling Ball and Simplification of the Separation Equation”, Regul. Chaotic Dyn., 18:3 (2013), 226–236
\Bibitem{Rut13}
\by Nils Rutstam
\paper High Frequency Behavior of a Rolling Ball and Simplification of the Separation Equation
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 3
\pages 226--236
\mathnet{http://mi.mathnet.ru/rcd111}
\crossref{https://doi.org/10.1134/S1560354713030039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3061807}
\zmath{https://zbmath.org/?q=an:1273.70008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000319763900003}
Linking options:
https://www.mathnet.ru/eng/rcd111
https://www.mathnet.ru/eng/rcd/v18/i3/p226
This publication is cited in the following 4 articles:
Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204
Yury L. Karavaev, Alexander A. Kilin, “The Dynamics and Control of a Spherical Robot with an Internal Omniwheel Platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–152
Stefan Rauch-Wojciechowski, Nils Rutstam, “Dynamics of an Inverting Tippe Top”, SIGMA, 10 (2014), 017, 18 pp.
Stefan Rauch-Wojciechowski, Nils Rutstam, “Dynamics of the Tippe Top — Properties of Numerical Solutions Versus the Dynamical Equations”, Regul. Chaotic Dyn., 18:4 (2013), 453–467