Abstract:
This paper examines the motion of a balanced spherical robot under the action of periodically changing moments of inertia and gyrostatic momentum. The system of equations of motion is constructed using the model of the rolling of a rubber body (without slipping and twisting) and is nonconservative. It is shown that in the absence of gyrostatic momentum the equations of motion admit three invariant submanifolds corresponding to plane-parallel motion of the sphere with rotation about the minor, middle and major axes of inertia. The abovementioned motions are quasi-periodic, and for the numerical estimate of their stability charts of the largest Lyapunov exponent and charts of stability are plotted versus the frequency and amplitude of the moments of inertia. It is shown that rotations about the minor and major axes of inertia can become unstable at sufficiently small amplitudes of the moments of inertia. In this case, the so-called “Arnol’d tongues” arise in the stability chart. Stabilization of the middle unstable axis of inertia turns out to be possible at sufficiently large amplitudes of the moments of inertia, when the middle axis of inertia becomes the minor axis for a part of a period. It is shown that the nonconservativeness of the system manifests itself in the occurrence of limit cycles, attracting tori and strange attractors in phase space. Numerical calculations show that strange attractors may arise through a cascade of period-doubling bifurcations or after a finite number of torus-doubling bifurcations.
This work of E.V.Vetchanin (Introduction and Section 2) was supported by the Russian Science
Foundation under grant 18-71-00111.
The work of I. S.Mamaev (Sections 1 and 3) was carried out within the framework of the state
assignment of the Ministry of Education and Science of Russia (FZZN-2020-0011).
\Bibitem{MamVet20}
\by Ivan S. Mamaev, Evgeny V. Vetchanin
\paper Dynamics of Rubber Chaplygin Sphere under Periodic Control
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 2
\pages 215--236
\mathnet{http://mi.mathnet.ru/rcd1060}
\crossref{https://doi.org/10.1134/S1560354720020069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524953000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083261447}
Linking options:
https://www.mathnet.ru/eng/rcd1060
https://www.mathnet.ru/eng/rcd/v25/i2/p215
This publication is cited in the following 16 articles:
Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024
Ivan A. Bizyaev, Ivan S. Mamaev, “Roller Racer with Varying Gyrostatic Momentum:
Acceleration Criterion and Strange Attractors”, Regul. Chaotic Dyn., 28:1 (2023), 107–130
Evgeniya A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106920–15
E. V. Vetchanin, I. S. Mamaev, “Chislennyi analiz periodicheskikh upravlenii vodnogo robota neizmennoi formy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 644–660
E. A. Mikishanina, “Motion Control of a Spherical Robot with a Pendulum
Actuator for Pursuing a Target”, Rus. J. Nonlin. Dyn., 18:5 (2022), 899–913
P. Astafyeva, O. Kiselev, “Formal Asymptotics of Parametric Subresonance”, Rus. J. Nonlin. Dyn., 18:5 (2022), 927–937
Alexander P. Ivanov, “Singularities in the rolling motion of a spherical robot”, International Journal of Non-Linear Mechanics, 145 (2022), 104061
Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492
I. S. Mamaev, I. A. Bizyaev, “Dynamics of an unbalanced circular foil and point vortices in an ideal fluid”, Phys. Fluids, 33:8 (2021), 087119
Evgeny V. Vetchanin, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
Alexander Kilin, Elena Pivovarova, 2021 International Conference “Nonlinearity, Information and Robotics” (NIR), 2021, 1
Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part I. On the Suslov Problem”, Regul. Chaotic Dyn., 25:3 (2020), 313–322
Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706
A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin Ball with Variable Parameters”, Rus. J. Nonlin. Dyn., 16:3 (2020), 453–462
I. A. Bizyaev, I. S. Mamaev, “Dinamika pary tochechnykh vikhrei i profilya s parametricheskim vozbuzhdeniem v idealnoi zhidkosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 618–627
A. A. Kilin, E. N. Pivovarova, “Neintegriruemost zadachi o kachenii sfericheskogo volchka po vibriruyuschei ploskosti”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 628–644