Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2013, Volume 18, Issue 1-2, Pages 126–143
DOI: https://doi.org/10.1134/S1560354713010097
(Mi rcd100)
 

This article is cited in 37 scientific papers (total in 37 papers)

On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors

Mikhail Svinin, Akihiro Morinaga, Motoji Yamamoto

Mechanical Engineering Department, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Citations (37)
References:
Abstract: The paper deals with the dynamics of a spherical rolling robot actuated by internal rotors that are placed on orthogonal axes. The driving principle for such a robot exploits nonholonomic constraints to propel the rolling carrier. A full mathematical model as well as its reduced version are derived, and the inverse dynamics are addressed. It is shown that if the rotors are mounted on three orthogonal axes, any feasible kinematic trajectory of the rolling robot is dynamically realizable. For the case of only two rotors the conditions of controllability and dynamic realizability are established. It is shown that in moving the robot by tracing straight lines and circles in the contact plane the dynamically realizable trajectories are not represented by the circles on the sphere, which is a feature of the kinematic model of pure rolling. The implication of this fact to motion planning is explored under a case study. It is shown there that in maneuvering the robot by tracing circles on the sphere the dynamically realizable trajectories are essentially different from those resulted from kinematic models. The dynamic motion planning problem is then formulated in the optimal control settings, and properties of the optimal trajectories are illustrated under simulation.
Keywords: non-holonomic systems, rolling constraints, dynamics, motion planning.
Received: 30.01.2013
Accepted: 10.03.2013
Bibliographic databases:
Document Type: Article
Language: English
Citation: Mikhail Svinin, Akihiro Morinaga, Motoji Yamamoto, “On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors”, Regul. Chaotic Dyn., 18:1-2 (2013), 126–143
Citation in format AMSBIB
\Bibitem{SviMorYam13}
\by Mikhail Svinin, Akihiro Morinaga, Motoji Yamamoto
\paper On the Dynamic Model and Motion Planning for a Spherical Rolling Robot Actuated by Orthogonal Internal Rotors
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 126--143
\mathnet{http://mi.mathnet.ru/rcd100}
\crossref{https://doi.org/10.1134/S1560354713010097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3040987}
\zmath{https://zbmath.org/?q=an:1272.70049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000317623400009}
Linking options:
  • https://www.mathnet.ru/eng/rcd100
  • https://www.mathnet.ru/eng/rcd/v18/i1/p126
  • This publication is cited in the following 37 articles:
    1. E. A. Mikishanina, “Control of a Spherical Robot with a Nonholonomic Omniwheel Hinge Inside”, Rus. J. Nonlin. Dyn., 20:1 (2024), 179–193  mathnet  crossref
    2. Anil B, Sneha Gajbhiye, 2024 18th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2024, 76  crossref
    3. Bernard Brogliato, “Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: A tutorial overview and perspectives”, Annual Reviews in Control, 55 (2023), 297  crossref
    4. Miguel Á. Berbel, Marco Castrillón López, “Rigid body with rotors and reduction by stages”, Rev. Math. Phys., 35:01 (2023)  crossref
    5. Seyed Amir Tafrishi, Mikhail Svinin, Motoji Yamamoto, Yasuhisa Hirata, “A geometric motion planning for a spin-rolling sphere on a plane”, Applied Mathematical Modelling, 121 (2023), 542  crossref
    6. Yu. L. Karavaev, “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750  mathnet  crossref  mathscinet
    7. Alexander A. Kilin, Elena N. Pivovarova, “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492  crossref
    8. Alexander A. Kilin, Elena N. Pivovarova, “Stability and Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base”, Regul. Chaotic Dyn., 25:6 (2020), 729–752  mathnet  crossref  mathscinet
    9. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    10. E. A. Mityushov, N. E. Misyura, S. A. Berestova, “Kvaternionnaya model programmnogo upravleniya dvizheniem shara Chaplygina”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:3 (2019), 408–421  mathnet  crossref
    11. T. B. Ivanova, A. A. Kilin, E. N. Pivovarova, “Controlled motion of a spherical robot with feedback. I”, J. Dyn. Control Syst., 24:3 (2018), 497–510  crossref  mathscinet  zmath  isi  scopus
    12. Yang Bai, Mikhail Svinin, Motoji Yamamoto, “Dynamics-Based Motion Planning for a Pendulum-Actuated Spherical Rolling Robot”, Regul. Chaotic Dyn., 23:4 (2018), 372–388  mathnet  crossref  mathscinet
    13. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. H. Kang, C. Liu, Ya.-B. Jia, “Inverse dynamics and energy optimal trajectories for a wheeled mobile robot”, Int. J. Mech. Sci., 134 (2017), 576–588  crossref  isi  scopus
    15. M. R. Azizi, J. Keighobadi, “Point stabilization of nonholonomic spherical mobile robot using nonlinear model predictive control”, Robot. Auton. Syst., 98 (2017), 347–359  crossref  isi  scopus
    16. Alexey V. Borisov, Ivan S. Mamaev, “Adiabatic Invariants, Diffusion and Acceleration in Rigid Body Dynamics”, Regul. Chaotic Dyn., 21:2 (2016), 232–248  mathnet  crossref  mathscinet  zmath  elib
    17. V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems”, J. Dyn. Control Syst., 22:4 (2016), 713–724  crossref  mathscinet  zmath  isi  scopus
    18. S. Gajbhiye, R. N. Banavar, “Geometric tracking control for a nonholonomic system: a spherical robot”, IFAC-PapersOnLine, 49:18 (2016), 820–825  crossref  mathscinet  isi  scopus
    19. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    20. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172  mathnet  crossref  mathscinet  zmath  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:344
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025