This work was supported by the Russian Science Foundation (Project No. 17-11-01388) and performed in Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 12.08.2019 Accepted: 11.12.2019
Bibliographic databases:
Document Type:
Article
Language: English
Linking options:
https://www.mathnet.ru/eng/qip6
This publication is cited in the following 10 articles:
V. I. Yashin, “The Extension of Unital Completely Positive Semigroups on Operator Systems to Semigroups on C∗-Algebras”, Lobachevskii J Math, 43:7 (2022), 1778
A. S. Mokeev, “On the counting of quantum errors”, Lobachevskii J. Math., 43:7 (2022), 1720–1725
G. G. Amosov, “On quantum channels generated by covariant positive operator-valued measures on a locally compact group”, Quantum Inf. Process., 21 (2022), 312–10
G. G. Amosov, A. S. Mokeev, A. N. Pechen, “Noncommutative graphs based on finite-infinite system couplings: Quantum error correction for a qubit coupled to a coherent field”, Phys. Rev. A, 103:4 (2021), 42407–17
G. G. Amosov, A. S. Mokeev, “On Noncommutative Operator Graphs Generated by Resolutions of Identity”, Proc. Steklov Inst. Math., 313 (2021), 8–16
G. G. Amosov, A. S. Mokeev, A. N. Pechen, “On the construction of a quantum channel corresponding to non-commutative graph for a qubit interacting with quantum oscillator”, Lobachevskii J. Math., 42:10 (2021), 2280–2284
G. G. Amosov, “On inner geometry of noncommutative operator graphs”, Eur. Phys. J. Plus, 135 (2020), 865–6
G. G. Amosov, A. Mokeev, “On errors generated by unitary dynamics of bipartite quantum systems”, Lobachevskii J. Math., 41:12 (2020), 2310–2315
G. G. Amosov, A. S. Mokeev, “Non-commutative graphs in the Fock space over one-particle Hilbert space”, Lobachevskii J. Math., 41:4 (2020), 589–593
O. V. Morzhin, A. N. Pechen, “Maximization of the Uhlmann–Jozsa Fidelity for an Open Two-Level Quantum System with Coherent and Incoherent Controls”, Phys. Part. Nucl., 51:4 (2020), 464–469