Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1989, Volume 25, Issue 1, Pages 33–37 (Mi ppi636)  

This article is cited in 5 scientific papers (total in 5 papers)

Coding Theory

On the Straight-Line Bound for the Undetected Error Exponent

V. I. Levenshtein
Full-text PDF (603 kB) Citations (5)
Abstract: We derive a one-parametric family of lower bounds for the undetected error probability of a code in a binary symmetric channel. With an optimally chosen parameter, these bounds lead to the so-called straight-line bound for the undetected error exponent. The straight-line bound is asymptotically exact if the Varshamov-Gilbert bound for the distance of binary codes is asymptotically exact.
Received: 06.01.1987
Bibliographic databases:
Document Type: Article
UDC: 621.391.15:681.3.053
Language: Russian
Citation: V. I. Levenshtein, “On the Straight-Line Bound for the Undetected Error Exponent”, Probl. Peredachi Inf., 25:1 (1989), 33–37; Problems Inform. Transmission, 25:1 (1989), 24–27
Citation in format AMSBIB
\Bibitem{Lev89}
\by V.~I.~Levenshtein
\paper On the Straight-Line Bound for the Undetected Error Exponent
\jour Probl. Peredachi Inf.
\yr 1989
\vol 25
\issue 1
\pages 33--37
\mathnet{http://mi.mathnet.ru/ppi636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=994107}
\zmath{https://zbmath.org/?q=an:0708.94022}
\transl
\jour Problems Inform. Transmission
\yr 1989
\vol 25
\issue 1
\pages 24--27
Linking options:
  • https://www.mathnet.ru/eng/ppi636
  • https://www.mathnet.ru/eng/ppi/v25/i1/p33
  • This publication is cited in the following 5 articles:
    1. M. V. Burnashev, “On lower bounds on the spectrum of a binary code”, Problems Inform. Transmission, 55:4 (2019), 366–375  mathnet  crossref  crossref  isi  elib
    2. M. V. Burnashev, “On the BSC reliability function: expanding the region where it is known exactly”, Problems Inform. Transmission, 51:4 (2015), 307–325  mathnet  crossref  isi  elib
    3. M. V. Burnashev, “Code Spectrum and the Reliability Function: Binary Symmetric Channel”, Problems Inform. Transmission, 42:4 (2006), 263–281  mathnet  crossref  mathscinet
    4. M. V. Burnashev, “Sharpening of the Upper Bound for the Reliability Function of a Binary Symmetric Channel”, Problems Inform. Transmission, 41:4 (2005), 301–318  mathnet  crossref  mathscinet  zmath
    5. Litsyn, S, “New upper bounds on error exponents”, IEEE Transactions on Information Theory, 45:2 (1999), 385  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :146
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025