Loading [MathJax]/jax/output/CommonHTML/jax.js
Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2021, Volume 57, Issue 4, Pages 63–73
DOI: https://doi.org/10.31857/S0555292321040057
(Mi ppi2355)
 

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

On intersections of Reed–Muller like codes

F. I. Solov'eva

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
Full-text PDF (212 kB) Citations (1)
References:
Abstract: A binary code that has the parameters and possesses the main properties of the classical r th-order Reed–Muller code RMr,m will be called an r th-order Reed–Muller like code and will be denoted by LRMr,m. The class of such codes contains the family of codes obtained by the Pulatov construction and also classical linear and Z4-linear Reed–Muller codes. We analyze the intersection problem for the Reed–Muller like codes. We prove that for any even k in the interval 0k22r1i=0(m1i) there exist LRMr,m codes of order r and length 2m having intersection size k. We also prove that there exist two Reed–Muller like codes of order r and length 2m whose intersection size is 2k1k2 with 1ks|RMr1,m1|, s{1,2}, for any admissible length starting from 16.
Keywords: Reed–Muller code, Reed–Muller like code, code intersection problem, Pulatov codes, components of Reed–Muller codes, i-component, switching, switching construction for codes.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0314-2019-0016
The research was carried out at the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences under State Assignment no. 0314-2019-0016.
Received: 25.06.2021
Revised: 10.11.2021
Accepted: 10.11.2021
English version:
Problems of Information Transmission, 2021, Volume 57, Issue 4, Pages 357–367
DOI: https://doi.org/10.1134/S0032946021040050
Bibliographic databases:
Document Type: Article
UDC: 621.391.1 : 519.725
Language: Russian
Citation: F. I. Solov'eva, “On intersections of Reed–Muller like codes”, Probl. Peredachi Inf., 57:4 (2021), 63–73; Problems Inform. Transmission, 57:4 (2021), 357–367
Citation in format AMSBIB
\Bibitem{Sol21}
\by F.~I.~Solov'eva
\paper On intersections of Reed--Muller like codes
\jour Probl. Peredachi Inf.
\yr 2021
\vol 57
\issue 4
\pages 63--73
\mathnet{http://mi.mathnet.ru/ppi2355}
\crossref{https://doi.org/10.31857/S0555292321040057}
\transl
\jour Problems Inform. Transmission
\yr 2021
\vol 57
\issue 4
\pages 357--367
\crossref{https://doi.org/10.1134/S0032946021040050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000742673500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85122980393}
Linking options:
  • https://www.mathnet.ru/eng/ppi2355
  • https://www.mathnet.ru/eng/ppi/v57/i4/p63
  • This publication is cited in the following 1 articles:
    1. I. Yu. Mogilnykh, F. I. Solov'eva, “On weight distributions for a class of codes with parameters of Reed–Muller codes”, Problems Inform. Transmission, 58:3 (2022), 231–241  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :10
    References:20
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025