Abstract:
Let {ξk}∞k=0 be a sequence of i.i.d. real-valued random variables, and let g(x) be a continuous positive function. Under rather general conditions, we prove results on sharp asymptotics of the probabilities P{1n∑n−1k=0g(ξk)<d}, n→∞, and also of their conditional versions. The results are obtained using a new method developed in the paper, namely, the Laplace method for sojourn times of discrete-time Markov chains. We consider two examples: standard Gaussian random variables with g(x)=xp, p>0, and exponential random variables with g(x)=x for x⩾0.
Citation:
V. R. Fatalov, “Large deviations for distributions of sums of random variables: Markov chain method”, Probl. Peredachi Inf., 46:2 (2010), 66–90; Problems Inform. Transmission, 46:2 (2010), 160–183
\Bibitem{Fat10}
\by V.~R.~Fatalov
\paper Large deviations for distributions of sums of random variables: Markov chain method
\jour Probl. Peredachi Inf.
\yr 2010
\vol 46
\issue 2
\pages 66--90
\mathnet{http://mi.mathnet.ru/ppi2016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2724797}
\elib{https://elibrary.ru/item.asp?id=15336968}
\transl
\jour Problems Inform. Transmission
\yr 2010
\vol 46
\issue 2
\pages 160--183
\crossref{https://doi.org/10.1134/S0032946010020055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280241600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956162588}
Linking options:
https://www.mathnet.ru/eng/ppi2016
https://www.mathnet.ru/eng/ppi/v46/i2/p66
This publication is cited in the following 4 articles:
Kasparaviciute A., Deltuviene D., “Asymptotic Expansion For the Distribution Density Function of the Compound Poisson Process in Large Deviations”, J. Theor. Probab., 30:4 (2017), 1655–1676
V. R. Fatalov, “Ergodic means for large values of T and exact asymptotics of small deviations for a multi-dimensional Wiener process”, Izv. Math., 77:6 (2013), 1224–1259
Aurelija Kasparavičiūtė, Theorems of Large Deviations for the Sums of a Random Number of Independent Random Variables, 2013
V. R. Fatalov, “Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method”, Izv. Math., 75:4 (2011), 837–868