Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1978, Volume 14, Issue 1, Pages 3–25 (Mi ppi1518)  

This article is cited in 27 scientific papers (total in 27 papers)

Information Theory

On Bounds for Packings on a Sphere and in Space

G. A. Kabatiansky, V. I. Levenshtein
Abstract: A method is proposed for obtaining bounds for packings in metric spaces, the method being based on the use of zonal spherical functions associated with a motion group of the space. For the maximum number M(n,Θ)M(n,Θ) of points of a unit sphere of nn-dimensional Euclidean space at an angular distance of not less than ΘΘ from one another, the method is used to obtain an upper bound that is better than the available ones for any fixed Θ(0<Θ<π/2)Θ(0<Θ<π/2) and nn This bound yields a new asymptotic upper bound for dn, namely, the maximum packing density of an nn-dimensional Euclidean space by equal balls.
Received: 26.01.1977
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519
Language: Russian
Citation: G. A. Kabatiansky, V. I. Levenshtein, “On Bounds for Packings on a Sphere and in Space”, Probl. Peredachi Inf., 14:1 (1978), 3–25; Problems Inform. Transmission, 14:1 (1978), 1–17
Citation in format AMSBIB
\Bibitem{KabLev78}
\by G.~A.~Kabatiansky, V.~I.~Levenshtein
\paper On Bounds for Packings on a~Sphere and in Space
\jour Probl. Peredachi Inf.
\yr 1978
\vol 14
\issue 1
\pages 3--25
\mathnet{http://mi.mathnet.ru/ppi1518}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=514023}
\zmath{https://zbmath.org/?q=an:0407.52005}
\transl
\jour Problems Inform. Transmission
\yr 1978
\vol 14
\issue 1
\pages 1--17
Linking options:
  • https://www.mathnet.ru/eng/ppi1518
  • https://www.mathnet.ru/eng/ppi/v14/i1/p3
  • This publication is cited in the following 27 articles:
    1. Afkhami-Jeddi N. Cohn H. Hartman T. de Laat D. Tajdini A., “High-Dimensional Sphere Packing and the Modular Bootstrap”, J. High Energy Phys., 2020, no. 12, 66  crossref  mathscinet  zmath  isi  scopus
    2. Izv. Math., 83:3 (2019), 540–564  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Boyvalenkov P.G., Dragnev P.D., Hardin D.P., Saff E.B., Stoyanova M.M., “Energy Bounds For Codes in Polynomial Metric Spaces”, Anal. Math. Phys., 9:2, SI (2019), 781–808  crossref  mathscinet  zmath  isi  scopus
    4. G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 56:5 (2016), 744–755  mathnet  crossref  crossref  isi  elib
    5. N. A. Kuklin, “The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 99–111  mathnet  crossref  mathscinet  isi  elib
    6. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality”, Comput. Math. Math. Phys., 54:8 (2014), 1201–1213  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. N. A. Kuklin, “Delsarte method in the problem on kissing numbers in high-dimensional spaces”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 108–123  mathnet  crossref  isi  elib
    8. N. A. Kuklin, “Vid ekstremalnoi funktsii v zadache Delsarta otsenki sverkhu kontaktnogo chisla trekhmernogo prostranstva”, Tr. IMM UrO RAN, 17, no. 3, 2011, 225–232  mathnet  elib
    9. Proc. Steklov Inst. Math., 275 (2011), 229–238  mathnet  crossref  mathscinet  isi  elib  elib
    10. Proc. Steklov Inst. Math., 263 (2008), 134–149  mathnet  crossref  mathscinet  zmath  isi  elib
    11. Ben-Haim, Y, “Improved upper bounds on the reliability function of the Gaussian channel”, IEEE Transactions on Information Theory, 54:1 (2008), 5  crossref  isi
    12. Barg A., Nogin D., “A Functional View of Upper Bounds on Codes”, Coding and Cryptology, Series on Coding Theory and Cryptology, 4, eds. Li Y., Ling S., Niederreiter H., Wang H., Xing C., Zhang S., World Scientific Publ Co Pte Ltd, 2008, 15–24  crossref  isi
    13. M. V. Burnashev, “Code Spectrum and the Reliability Function: Gaussian Channel”, Problems Inform. Transmission, 43:2 (2007), 69–88  mathnet  crossref  mathscinet  zmath  isi
    14. A. M. Raigorodskii, “On a problem in the geometry of numbers”, Tr. In-ta matem., 15:1 (2007), 111–117  mathnet
    15. Burnashev M.V., “New Results on the Reliability Function of the Gaussian Channel”, 2007 IEEE International Symposium on Information Theory Proceedings, Vols 1-7, IEEE, 2007, 471–474  crossref  isi
    16. A. M. Barg, D. Yu. Nogin, “Spectral Approach to Linear Programming Bounds on Codes”, Problems Inform. Transmission, 42:2 (2006), 77–89  mathnet  crossref  mathscinet
    17. Ben-Haim Ya., Litsyn S., “Improved upper bounds on the reliability function of the Gaussian channel”, 2006 IEEE International Symposium on Information Theory, 2006, 709–713  crossref  isi
    18. M. A. Vsemirnov, M. G. Rzhevskii, “An upper bound for the contact number in dimension 9”, Russian Math. Surveys, 57:5 (2002), 1015–1016  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    19. N. N. Andreev, “A minimal design of order 1111 on the 33-sphere”, Math. Notes, 67:4 (2000), 417–424  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    20. V. V. Arestov, A. G. Babenko, “Estimates of the maximal value of angular code distance for 24 and 25 points on the unit sphere in R4”, Math. Notes, 68:4 (2000), 419–435  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:4222
    Full-text PDF :2086
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025