Loading [MathJax]/jax/output/SVG/config.js
Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1992, Volume 28, Issue 3, Pages 80–94 (Mi ppi1360)  

This article is cited in 7 scientific papers (total in 7 papers)

Information Theory and Coding Theory

Decoding of Reed?Muller Codes with a Large Number of Errors

V. M. Sidel'nikov, A. S. Pershakov
Full-text PDF (953 kB) Citations (7)
Abstract: New $O(n^{r-1}N^2)$, $r\geq 2$, soft-decoding algorithms are constructed for $RM_r$ codes of order $r$ and length $N=2^n$. Although the complexity of these algorithms is somewhat higher than that of known algorithms, they almost always correct a corrupted codeword for $r=\mathrm{const}$, $n\to\infty$ when the number of errors $(1-\varepsilon)N/2$, is much greater than half the code distance. Bounds on the number of almost always corrected errors are obtained for the proposed algorithm and the minimum-distance correlation decoding algorithm. In particular, it is shown that for $r=2$ and $n\to\infty$ the proposed decoding algorithm corrects almost all errors of multiplicity $t\leq(N-Cn^{1/4}N^{3/4})/2$, $C>\ln 4$. Experimental results on decoding of $RM_r$ codes for $r=2,3$ and $N\leq 2^{10}$ indicate that the proposed algorithms are effective for a much greater number of errors than the standard majority algorithms for these codes.
Received: 18.06.1990
Revised: 14.01.1992
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. M. Sidel'nikov, A. S. Pershakov, “Decoding of Reed?Muller Codes with a Large Number of Errors”, Probl. Peredachi Inf., 28:3 (1992), 80–94; Problems Inform. Transmission, 28:3 (1992), 269–281
Citation in format AMSBIB
\Bibitem{SidPer92}
\by V.~M.~Sidel'nikov, A.~S.~Pershakov
\paper Decoding of Reed?Muller Codes with a Large Number of Errors
\jour Probl. Peredachi Inf.
\yr 1992
\vol 28
\issue 3
\pages 80--94
\mathnet{http://mi.mathnet.ru/ppi1360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1189338}
\zmath{https://zbmath.org/?q=an:0769.94013}
\transl
\jour Problems Inform. Transmission
\yr 1992
\vol 28
\issue 3
\pages 269--281
Linking options:
  • https://www.mathnet.ru/eng/ppi1360
  • https://www.mathnet.ru/eng/ppi/v28/i3/p80
  • This publication is cited in the following 7 articles:
    1. Yu. V. Kosolapov, E. A. Lelyuk, “Kriptosistema tipa Mak-Elisa na $D$-kodakh”, Matem. vopr. kriptogr., 15:2 (2024), 69–90  mathnet  crossref
    2. V. M. Deundyak, N. S. Mogilevskaya, “Ob usloviyakh korrektnosti dekodera myagkikh reshenii troichnykh kodov Rida–Mallera vtorogo poryadka”, Vladikavk. matem. zhurn., 18:4 (2016), 23–33  mathnet
    3. I. V. Chizhov, “The key space of the McEliece–Sidelnikov cryptosystem”, Discrete Math. Appl., 19:5 (2009), 445–474  mathnet  crossref  crossref  mathscinet  elib
    4. Helleseth, T, “Error-correction capability of binary linear codes”, IEEE Transactions on Information Theory, 51:4 (2005), 1408  crossref  mathscinet  isi
    5. G. A. Karpunin, “On the McEliece public-key cryptosystem based on Reed-Muller binary codes”, Discrete Math. Appl., 14:3 (2004), 257–262  mathnet  crossref  crossref  mathscinet  zmath
    6. Logachev, OA, “Nondegenerate normal forms of Boolean functions”, Doklady Mathematics, 62:1 (2000), 35  zmath  isi
    7. V. M. Sidel'nikov, “Algorithms for Generation of a Common Key Using a Quantum Communication Channel”, Problems Inform. Transmission, 35:1 (1999), 85–92  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:1436
    Full-text PDF :694
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025