Abstract:
Constructions of conflict-avoiding codes are presented. These codes can be used as protocol sequences for successful packet transmission over a collision channel without feedback. We give a relation between codes that avoid conflicts of different numbers of colliding users. Upper bounds on the maximum code size and three particular code constructions are presented.
Citation:
B. S. Tsybakov, A. R. Rubinov, “Some Constructions of Conflict-Avoiding Codes”, Probl. Peredachi Inf., 38:4 (2002), 24–36; Problems Inform. Transmission, 38:4 (2002), 268–279
This publication is cited in the following 23 articles:
Liang-Chung Hsia, Hua-Chieh Li, Wei-Liang Sun, “Conflict-Avoiding Codes of Prime Lengths and Cyclotomic Numbers”, IEEE Trans. Inform. Theory, 70:10 (2024), 6834
Liang-Chung Hsia, Hua-Chieh Li, Wei-Liang Sun, “Certain diagonal equations and conflict-avoiding codes of prime lengths”, Finite Fields and Their Applications, 92 (2023), 102298
Gianluca De Marco, Dariusz R. Kowalski, Grzegorz Stachowiak, 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), 2021, 1009
Gianluca De Marco, Dariusz R Kowalski, Grzegorz Stachowiak, 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019, 472
Miwako Mishima, Koji Momihara, “A new series of optimal tight conflict-avoiding codes of weight 3”, Discrete Mathematics, 340:4 (2017), 617
Ma W. Zhao Ch.-e. Shen D., “New Optimal Constructions of Conflict-Avoiding Codes of Odd Length and Weight 3”, Des. Codes Cryptogr., 73:3 (2014), 791–804
Fu H.-L. Lo Yu.-H. Shum K.W., “Optimal Conflict-Avoiding Codes of Odd Length and Weight Three”, Des. Codes Cryptogr., 72:2 (2014), 289–309
Lin Y. Mishima M. Satoh J. Jimbo M., “Optimal Equi-Difference Conflict-Avoiding Codes of Odd Length and Weight Three”, Finite Fields their Appl., 26 (2014), 49–68
Shung‐Liang Wu, Hung‐Lin Fu, “Optimal Tight Equi‐Difference Conflict‐Avoiding Codes of Length n = 2k ± 1 and Weight 3”, J of Combinatorial Designs, 21:6 (2013), 223
Kenneth W. Shum, Proceedings of the Fifth International Workshop on Signal Design and Its Applications in Communications, 2011, 134
Shum K.W., Wong W.Sh., Chen Ch.Sh., “A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes”, IEEE Trans Inform Theory, 56:7 (2010), 3265–3276
Hung-Lin Fu, Yi-Hean Lin, Miwako Mishima, “Optimal Conflict-Avoiding Codes of Even Length and Weight 3”, IEEE Trans. Inform. Theory, 56:11 (2010), 5747
Mishima M., Fu Hung-Lin, Uruno Sh., “Optimal conflict-avoiding codes of length n≡0(mod16) and weight 3”, Des. Codes Cryptogr., 52:3 (2009), 275–291
V. I. Levenshtein, “Conflict-Avoiding Codes and Cyclic Triple Systems”, Problems Inform. Transmission, 43:3 (2007), 199–212
Momihara K., Müller M., Satoh J., Jimbo M., “Constant weight conflict-avoiding codes”, SIAM J. Discrete Math., 21:4 (2007), 959–979
Momihara K., “Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three”, Des. Codes Cryptogr., 45:3 (2007), 379–390
Jimbo M., Mishima M., Janiszewski S., Teymorian A.Y., Tonchev V.D., “On conflict-avoiding codes of length n=4m for three active users”, IEEE Trans. Inform. Theory, 53:8 (2007), 2732–2742
Momihara K., Mueller M., Satoh J., Jimbo M., “Bounds and constructions for optimal constant weight conflict-avoiding codes”, 2007 IEEE International Symposium on Information Theory Proceedings, 2007, 336–340