Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2016, Volume 57, Issue 5, Pages 5–14
DOI: https://doi.org/10.15372/PMTF20160501
(Mi pmtf785)
 

This article is cited in 20 scientific papers (total in 20 papers)

Nonclassical models of the theory of plates and shells

B. D. Anninab, Yu. M. Volchkovab

a Lavrentyev Institute of Hydrodynamics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
b Novosibirsk State University, Novosibirsk, 630090, Russia
Abstract: Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the full system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each sought function (stresses and displacements) by segments of the Legendre polynomials are also reviewed.
Keywords: equations of the theory of shells, layered and composite shells, contact problems, Legendre polynomials.
Received: 21.09.2016
English version:
Journal of Applied Mechanics and Technical Physics, 2016, Volume 57, Issue 5, Pages 769–776
DOI: https://doi.org/10.1134/S0021894416050011
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: B. D. Annin, Yu. M. Volchkov, “Nonclassical models of the theory of plates and shells”, Prikl. Mekh. Tekh. Fiz., 57:5 (2016), 5–14; J. Appl. Mech. Tech. Phys., 57:5 (2016), 769–776
Citation in format AMSBIB
\Bibitem{AnnVol16}
\by B.~D.~Annin, Yu.~M.~Volchkov
\paper Nonclassical models of the theory of plates and shells
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2016
\vol 57
\issue 5
\pages 5--14
\mathnet{http://mi.mathnet.ru/pmtf785}
\crossref{https://doi.org/10.15372/PMTF20160501}
\elib{https://elibrary.ru/item.asp?id=27178514}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2016
\vol 57
\issue 5
\pages 769--776
\crossref{https://doi.org/10.1134/S0021894416050011}
Linking options:
  • https://www.mathnet.ru/eng/pmtf785
  • https://www.mathnet.ru/eng/pmtf/v57/i5/p5
  • This publication is cited in the following 20 articles:
    1. E. Carrera, D. Scano, M. Petrolo, “Evaluation of Variable Kinematics Beam, Plate, and Shell Theories using the Asymptotic-Axiomatic Method”, Mech. Solids, 2025  crossref
    2. Nikolay V. Boyev, Springer Proceedings in Materials, 41, Physics and Mechanics of New Materials and Their Applications, 2024, 399  crossref
    3. S. K. Golushko, L. S. Bryndin, V. A. Belyaev, A. G. Gorynin, “A Cubic Version of the Least-Squares Collocation Method and Its Application to the Calculation of Plate Bending”, J. Appl. Ind. Math., 18:3 (2024), 448  crossref
    4. S. M. Nguyen, D. R. Shelevaya, D. A. Krasnorutsky, “Using RBF-FD for calculation of hydroelastic vibrations of axisymmetric orthotropic shells of rotation”, Doklady Rossijskoj akademii nauk. Fizika, tehničeskie nauki, 516:1 (2024), 81  crossref
    5. V. V. Vasiliev, “Non-Classical Theories of Beams, Plates and Shells (A Review)”, Mech. Solids, 59:6 (2024), 3267  crossref
    6. I.S. Telyatnikov, A.V. Pavlova, “K modelirovaniyu medlennykh kolebanii i staticheskogo vzaimodeistviya litosfernykh otdelnostei, “Nauka yuga Rossii””, Science in the South of Russia, 2023, no. 3, 9  crossref
    7. Anna G. Knyazeva, Advanced Structured Materials, 198, Advances in Linear and Nonlinear Continuum and Structural Mechanics, 2023, 215  crossref
    8. Alla Pavlova, Ilya Telyatnikov, M. Sadriddinov, R. Abdullozoda, G. Devi, G. Khalmatjanova, “On the study of some geological structure models”, E3S Web of Conf., 463 (2023), 03011  crossref
    9. S. I. Zhavoronok, A. S. Kurbatov, O. V. Egorova, “On Various Equations of the Analytical Mechanics of Thick-Walled Heterogeneous Shells and Some of Their Applications in Wave Dispersion Problems”, Lobachevskii J Math, 44:6 (2023), 2501  crossref
    10. V. N. Bakulin, “MODEL FOR ANALYSIS OF THE STRESS-STRAIN STATE OF THREE-LAYER CYLINDRICAL SHELLS WITH RECTANGULAR CUTOUTS”, Mech. Solids, 57:1 (2022), 102  crossref
    11. A. V. Lopatin, V. V. Moskvichev, A. E. Burov, “Solving the problems of mechanics of cylindrical anisogrid lattice bodies of spacecrafts”, J. Appl. Mech. Tech. Phys., 62:5 (2021), 816–827  mathnet  crossref  crossref  elib
    12. Olga V. Egorova, Alexey S. Kurbatov, Lev N. Rabinskiy, Sergey I. Zhavoronok, “Modeling of the dynamics of plane functionally graded waveguides based on the different formulations of the plate theory of I. N. Vekua type”, Mechanics of Advanced Materials and Structures, 28:5 (2021), 506  crossref
    13. V. N. Bakulin, “Block-Layer Approach for the Analysis of the Stress–Strain State of Three-Layer Irregular Cylindrical Shells of Rotation”, Mech. Solids, 56:7 (2021), 1451  crossref
    14. E. Carrera, I. Elishakoff, M. Petrolo, “Who needs refined structural theories?”, Composite Structures, 264 (2021), 113671  crossref
    15. V. N. Bakulin, “Layer-by-Layer Stress–Strain Analysis of Irregular Sandwich Shells of Revolution with Non-Zero Gaussian Curvature”, Mech. Solids, 56:7 (2021), 1439  crossref
    16. Evgeny M. Zveryaev, Evgeniya M. Tupikova, “Iterative methods for constructing an equations of non-closed shells solution”, Struct. Mech. of Eng. Const. and Build, 17:6 (2021), 588  crossref
    17. Mikhail Karavaichenko, Linar Gazaleev, “Numerical modeling of a double-walled spherical reservoir”, PMI, 245 (2020), 561  crossref
    18. L N Rabinskiy, S I Zhavoronok, “Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua”, J. Phys.: Conf. Ser., 991 (2018), 012067  crossref
    19. Ekaterina L. Kuznetsova, Elena L. Kuznetsova, Lev N. Rabinskiy, Sergey I. Zhavoronok, “On the equations of the analytical dynamics of the quasi-3D plate theory of I. N. Vekua type and some their solutions”, J. vibroeng., 20:2 (2018), 1108  crossref
    20. V. A. Belyaev, V. P. Shapeev, AIP Conference Proceedings, 1893, 2017, 030102  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025