Abstract:
A fundamentally new unsaturated technique for the numerical solution of the Dirichlet–Neumann problem for the Laplace equation was designed. This technique makes it possible, due to the smoothness of the sought solution of the problem, to take into account the axisymmetric specificity of the problem, which prevents the use of any saturated numerical methods, i. e., methods with a leading error term.
Citation:
V. N. Belykh, “Numerical implementation of nonstationary axisymmetric problems of an ideal incompressible fluid with free surface”, Prikl. Mekh. Tekh. Fiz., 60:2 (2019), 226–237; J. Appl. Mech. Tech. Phys., 60:2 (2019), 382–391
\Bibitem{Bel19}
\by V.~N.~Belykh
\paper Numerical implementation of nonstationary axisymmetric problems of an ideal incompressible fluid with free surface
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2019
\vol 60
\issue 2
\pages 226--237
\mathnet{http://mi.mathnet.ru/pmtf473}
\crossref{https://doi.org/10.15372/PMTF20190219}
\elib{https://elibrary.ru/item.asp?id=37248724}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2019
\vol 60
\issue 2
\pages 382--391
\crossref{https://doi.org/10.1134/S0021894419020196}
Linking options:
https://www.mathnet.ru/eng/pmtf473
https://www.mathnet.ru/eng/pmtf/v60/i2/p226
This publication is cited in the following 2 articles:
V. N. Belykh, “Estimates of Alexandrov’s $n$-width of a compact set for some infinitely differentiable periodic functions”, Dokl. Math., 107:1 (2023), 4–8
V. N. Belykh, “Unsaturated Algorithms for the Numerical Solution of Elliptic Boundary Value Problems in Smooth Axisymmetric Domains”, Sib. Adv. Math., 32:3 (2022), 157