Prikladnaya Mekhanika i Tekhnicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Mekh. Tekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2007, Volume 48, Issue 6, Pages 158–169 (Mi pmtf2103)  

This article is cited in 8 scientific papers (total in 8 papers)

Nonlinear vibrations of a viscoelastic plate with concentrated masses

D. A. Khodzhaeva, B. Kh. Eshmatovb

a Tashkent Institute Irrigation and Melioration, Tashkent, 700000, Uzbekistan
b Polytechnic Institute and State University of Virginia, Blacksburg, 24061, USA
Full-text PDF (318 kB) Citations (8)
Abstract: The problem of vibrations of a viscoelastic plate with concentrated masses is studied in a geometrically nonlinear formulation. In the equation of motion of the plate, the action of the concentrated masses is taken into account using Dirac δ-functions. The problem is reduced to solving a system of Volterra type ordinary nonlinear integrodifferential equations using the Bubnov–Galerkin method. The resulting system with a singular Koltunov–Rzhanitsyn kernel is solved using a numerical method based on quadrature formulas. The effect of the viscoelastic properties of the plate material and the location and amount of concentrated masses on the vibration amplitude and frequency characteristics is studied. A comparison is made of numerical calculation results obtained using various theories.
Keywords: viscoelastic plate, concentrated mass, nonlinear vibrations, Bubnov–Galerkin method, relaxation kernel.
Received: 23.01.2006
Accepted: 22.11.2006
English version:
Journal of Applied Mechanics and Technical Physics, 2007, Volume 48, Issue 6, Pages 905–914
DOI: https://doi.org/10.1007/s10808-007-0115-7
Bibliographic databases:
Document Type: Article
UDC: 539.1
Language: Russian
Citation: D. A. Khodzhaev, B. Kh. Eshmatov, “Nonlinear vibrations of a viscoelastic plate with concentrated masses”, Prikl. Mekh. Tekh. Fiz., 48:6 (2007), 158–169; J. Appl. Mech. Tech. Phys., 48:6 (2007), 905–914
Citation in format AMSBIB
\Bibitem{KhoEsh07}
\by D.~A.~Khodzhaev, B.~Kh.~Eshmatov
\paper Nonlinear vibrations of a viscoelastic plate with concentrated masses
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2007
\vol 48
\issue 6
\pages 158--169
\mathnet{http://mi.mathnet.ru/pmtf2103}
\elib{https://elibrary.ru/item.asp?id=17425773}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2007
\vol 48
\issue 6
\pages 905--914
\crossref{https://doi.org/10.1007/s10808-007-0115-7}
Linking options:
  • https://www.mathnet.ru/eng/pmtf2103
  • https://www.mathnet.ru/eng/pmtf/v48/i6/p158
  • This publication is cited in the following 8 articles:
    1. V. N. Paimushin, V. M. Shishkin, “A refined model of dynamic deformation of a rod-strip with a fixed section of a finite length on one of the facial surfaces”, J. Appl. Mech. Tech. Phys., 65:1 (2024), 161–175  mathnet  crossref  crossref  elib
    2. Farzad Ebrahimi, Mehrdad Farajzadeh Ahari, “Dynamic Analysis of Sandwich Magnetostrictive Nanoplates with a Mass–Spring–Damper Stimulator”, Int. J. Str. Stab. Dyn., 24:09 (2024)  crossref
    3. Mehrdad Farajzadeh Ahari, Majid Ghadiri, “Resonator vibration of a magneto-electro-elastic nano-plate integrated with FGM layer subjected to the nano mass-Spring-damper system and a moving load”, Waves in Random and Complex Media, 2022, 1  crossref
    4. M.R. Permoon, H. Haddadpour, M. Javadi, “Nonlinear vibration of fractional viscoelastic plate: Primary, subharmonic, and superharmonic response”, International Journal of Non-Linear Mechanics, 99 (2018), 154  crossref
    5. Yury A. Rossikhin, Marina V. Shitikova, Jean Claude Ngenzi, “A New Approach for Studying Nonlinear Dynamic Response of a Thin Plate with Internal Resonance in a Fractional Viscoelastic Medium”, Shock and Vibration, 2015 (2015), 1  crossref
    6. Yury A. Rossikhin, Marina V. Shitikova, Advanced Structured Materials, 45, Shell and Membrane Theories in Mechanics and Biology, 2015, 267  crossref
    7. Anupam Khanna, Narinder Kaur, Advances in Intelligent Systems and Computing, 258, Proceedings of the Third International Conference on Soft Computing for Problem Solving, 2014, 641  crossref
    8. M. Amabili, “Geometrically nonlinear vibrations of rectangular plates carrying a concentrated mass”, Journal of Sound and Vibration, 329:21 (2010), 4501  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Mekhanika i Tekhnicheskaya Fizika Prikladnaya Mekhanika i Tekhnicheskaya Fizika
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025