Abstract:
A numerical-analytical method based on approximation of the sought solution by a system of basis functions is proposed to solve the boundary-value problem of axisymmetric deformation of articles made of a transversely isotropic material. An algorithm for constructing polynomial functions on the basis of invariant-group solutions is described.
Citation:
N. M. Bodunov, G. V. Druzhinin, “One solution of an axisymmetric problem of the elasticity theory for a transversely isotropic material”, Prikl. Mekh. Tekh. Fiz., 50:6 (2009), 81–89; J. Appl. Mech. Tech. Phys., 50:6 (2009), 982–988
\Bibitem{BodDru09}
\by N.~M.~Bodunov, G.~V.~Druzhinin
\paper One solution of an axisymmetric problem of the elasticity theory for a transversely isotropic material
\jour Prikl. Mekh. Tekh. Fiz.
\yr 2009
\vol 50
\issue 6
\pages 81--89
\mathnet{http://mi.mathnet.ru/pmtf1840}
\elib{https://elibrary.ru/item.asp?id=16227839}
\transl
\jour J. Appl. Mech. Tech. Phys.
\yr 2009
\vol 50
\issue 6
\pages 982--988
\crossref{https://doi.org/10.1007/s10808-009-0132-9}
Linking options:
https://www.mathnet.ru/eng/pmtf1840
https://www.mathnet.ru/eng/pmtf/v50/i6/p81
This publication is cited in the following 3 articles:
Yu. M. GRIGOR'EV, A. M. YAKOVLEV, “Transversally isotropic elastic material applicable for permafrost rocks: a case study”, jour, 28:2 (2023), 337
M. N. Erokhin, M. I. Belov, O. M. Mel'nikov, “Contact Pressure of a Rubber Cuff on a Shaft”, Russ. Engin. Res., 41:2 (2021), 115
X.-L. Gao, C. L. Mao, “Solution of the Contact Problem of a Rigid Conical Frustum Indenting a Transversely Isotropic Elastic Half-Space”, Journal of Applied Mechanics, 81:4 (2014)