Abstract:
A highly sensitive terahertz (THz) detector based on a photoconductive antenna (PCA) with plasmonic amplification on the basis of an InGaAs/InAlAs superlattice heterostructure is proposed. A noticeable increase in the photocurrent recorded by a plasmonic PCA detector and the signal-to-noise ratio was experimentally detected compared to the same parameters for the PCA detector without plasmonic electrodes. The efficiency of plasmonic electrodes has been experimentally confirmed by pulsed THz spectroscopy by measuring the dependence of the detector’s THz signal amplitude on the polarization of the incident pump laser radiation.
This study was carried out with the financial support of the Ministry of Education and Science of the Russian Federation (state order no. FSFZ-0706-2020-0022; experimental studies of temporal and spectral characteristics of THz radiation) and the Russian Foundation for Basic Research (project no. 20-32-70129; manufacturing and general characterization of samples).
Citation:
A. V. Gorbatova, D. I. Khusyainov, A. E. Yachmenev, R. A. Khabibullin, D. S. Ponomarev, A. M. Buryakov, E. D. Mishina, “A photoconductive THz detector based on a superlattice heterostructure with plasmonic amplification”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 46:22 (2020), 10–14; Tech. Phys. Lett., 46:11 (2020), 1111–1115
\Bibitem{GorKhuYac20}
\by A.~V.~Gorbatova, D.~I.~Khusyainov, A.~E.~Yachmenev, R.~A.~Khabibullin, D.~S.~Ponomarev, A.~M.~Buryakov, E.~D.~Mishina
\paper A photoconductive THz detector based on a superlattice heterostructure with plasmonic amplification
\jour Pisma v Zhurnal Tekhnicheskoi Fiziki
\yr 2020
\vol 46
\issue 22
\pages 10--14
\mathnet{http://mi.mathnet.ru/pjtf4932}
\crossref{https://doi.org/10.21883/PJTF.2020.22.50300.18442}
\elib{https://elibrary.ru/item.asp?id=44367780}
\transl
\jour Tech. Phys. Lett.
\yr 2020
\vol 46
\issue 11
\pages 1111--1115
\crossref{https://doi.org/10.1134/S1063785020110218}
Linking options:
https://www.mathnet.ru/eng/pjtf4932
https://www.mathnet.ru/eng/pjtf/v46/i22/p10
This publication is cited in the following 8 articles:
A. A. Guskov, N. V. Bezvikonnyi, S. D. Lavrov, “Kretschmann configuration as a method to enhance optical absorption in two-dimensional graphene-like semiconductors”, Rossijskij tehnologičeskij žurnal, 12:4 (2024), 96
E. R. Burmistrov, L. P. Avakyants, “Study of the Parameters of a Two-Dimensional Electron Gas in InGaN/GaN Quantum Wells by Terahertz Plasmon Resonance”, Semiconductors, 56:2 (2022), 50
Roger Lewis, Photoconductivity and Photoconductive Materials, 2022, 807
A. S. Sigov, I. V. Gladyshev, A. N. Yurasov, “Nanoelectronics and nanotechnology: promising approaches in the educational process”, Rossijskij tehnologičeskij žurnal, 10:4 (2022), 93
Andrey Guskov, Artur Avdizhiyan, Sergey Lavrov, Rinat Galiev, Anastasia Gorbatova, Arseniy Buryakov, Elena Mishina, “Sensitivity enhancement of two-dimensional WSe2-based photodetectors by ordered Ag plasmonic nanostructures”, Appl. Phys. Express, 14:7 (2021), 075005
E. D. Mishina, A. M. Buryakov, D. S. Ponomarev, “New Materials and Structures for Efficient Terahertz (THz) Spectroscopy”, J. Commun. Technol. Electron., 66:9 (2021), 1045
E. R. Burmistrov, L. P. Avakyants, “The Relaxation Time, Mobility, and Effective Mass of 2DEG in InGaN/GaN Quantum Wells According to Terahertz Plasmon Resonance Data”, Moscow Univ. Phys., 76:5 (2021), 371
Arseniy M. Buryakov, Maxim S. Ivanov, Dinar I. Khusyainov, Anastasia V. Gorbatova, Vladislav R. Bilyk, Evgeniy A. Klimov, Galib B. Galiev, Paula M. Vilarinho, Elena D. Mishina, “Effects of Crystallographic Orientation of GaAs Substrate and the Period of Plasmon Grid on THz Antenna Performance”, Annalen der Physik, 533:8 (2021)