Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2019, Volume 53, Issue 7, Pages 964–970
DOI: https://doi.org/10.21883/FTP.2019.07.47875.8927
(Mi phts5463)
 

This article is cited in 19 scientific papers (total in 19 papers)

Micro- and nanocrystalline, porous, composite semiconductors

Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation

I. V. Talyzin, M. V. Samsonov, V. M. Samsonov, M. Yu. Pushkar, V. V. Dronnikov

Tver State University
Abstract: The size dependence of the melting point of Si nanoparticles is investigated using molecular dynamics and thermodynamic simulation based on the Thomson’s formula. The atomistic modeling data obtained using the Stillinger–Weber potential agree with the results reported by other authors and thermodynamic-simulation data and predict a decrease in the melting point Tm of Si nanoparticles with an increase in their reciprocal radius R1 according to linear law. The available experimental data predict lower Tm values, including the limiting value Tm(), which corresponds to the linear extrapolation of experimental points to R10 (to the radius R); the underestimation is 200–300 K as compared with the reference melting point of silicon (1688 K). It is concluded that the molecular-dynamics data on Tm(R1) obtained using the Stillinger–Weber potential are more adequate than the available experimental data.
Received: 05.06.2018
Revised: 27.02.2019
Accepted: 28.02.2019
English version:
Semiconductors, 2019, Volume 53, Issue 7, Pages 947–953
DOI: https://doi.org/10.1134/S1063782619070236
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. V. Talyzin, M. V. Samsonov, V. M. Samsonov, M. Yu. Pushkar, V. V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation”, Fizika i Tekhnika Poluprovodnikov, 53:7 (2019), 964–970; Semiconductors, 53:7 (2019), 947–953
Citation in format AMSBIB
\Bibitem{TalSamSam19}
\by I.~V.~Talyzin, M.~V.~Samsonov, V.~M.~Samsonov, M.~Yu.~Pushkar, V.~V.~Dronnikov
\paper Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2019
\vol 53
\issue 7
\pages 964--970
\mathnet{http://mi.mathnet.ru/phts5463}
\crossref{https://doi.org/10.21883/FTP.2019.07.47875.8927}
\elib{https://elibrary.ru/item.asp?id=39133324}
\transl
\jour Semiconductors
\yr 2019
\vol 53
\issue 7
\pages 947--953
\crossref{https://doi.org/10.1134/S1063782619070236}
Linking options:
  • https://www.mathnet.ru/eng/phts5463
  • https://www.mathnet.ru/eng/phts/v53/i7/p964
  • This publication is cited in the following 19 articles:
    1. Xiangyu Chen, Nam Q. Le, Paulette Clancy, “Diffusion-Limited Crystal Growth of Gallium Nitride Using Active Machine Learning”, Crystal Growth & Design, 24:7 (2024), 2855  crossref
    2. Niklas Wolff, Maren Dworschak, Jan Benedikt, Lorenz Kienle, “Transmission Electron Microscopy Investigation of Self‐assembled 'Si/Mn4Si7‐Alloy' Janus Nanosphere Architectures Produced by a HelixJet Atmospheric Plasma Source”, Part & Part Syst Charact, 41:3 (2024)  crossref
    3. Mingdong Liao, Xiebo Hu, Chenghao Zhong, Ping Xu, Xiaodong Wang, Ze Zhang, Peng Zhou, Mingyu Zhang, Zhean Su, Qizhong Huang, “Controlling the Si/C ratio in SiC matrix based on the modified polymethysilane for C/C–SiC composites with enhanced mechanical properties”, Journal of Advanced Ceramics, 13:2 (2024), 220  crossref
    4. Jiahao Wu, Jingying Huang, Tonglin Liu, Bareera Raza, Ni Li, Yang Hu, Youkun Tao, Jing Shao, “Construction of Thermally Robust SERS Nanostructure for High-Temperature In Situ Analysis”, ACS Appl. Opt. Mater., 2:8 (2024), 1667  crossref
    5. Soyoung Heo, Seulbi Kim, Seung Yeon Lee, In Hye Kwak, Jaeyoon Baik, Heejun Yang, Ji Hun Park, Suyeon Cho, “Thermal-protective and oxygen-resistant nanocoating using silica-nanocomposites for laser thinning of polymorphic molybdenum ditellurides”, Applied Surface Science, 638 (2023), 157958  crossref
    6. Chemistry of Semiconductors, 2023, 270  crossref
    7. M.Y. Yang, G.H. Tang, Q. Sheng, L. Guo, H. Zhang, “Atomic-level sintering mechanism of silica aerogels at high temperatures: structure evolution and solid thermal conductivity”, International Journal of Heat and Mass Transfer, 199 (2022), 123456  crossref
    8. Jianqiang Ma, Sien Wang, Xiao Wan, Dengke Ma, Yue Xiao, Qing Hao, Nuo Yang, “The unrevealed 3D morphological evolution of annealed nanoporous thin films”, Nanoscale, 14:45 (2022), 17072  crossref
    9. L. Fedorenko, A. Medvids, V. Yukhymchuk, A. Evtukh, H. Mimura, O. Hreshchuk, L. Grase, S. Soroka, “Amorphous – Crystalline phase transition in nanostructural thin SiOx layers induced by pulsed laser radiation”, Optics & Laser Technology, 148 (2022), 107526  crossref
    10. SAVADOGO Mahamadi, Ousséni Fabrice OUEDRAOGO Pegdwindé, OUEDRAOGO Adama, ZIDA Lamine, ZOUNGRANA Martial, ZERBO Issa, “Uncooled PV cell under variable light concentration: Determination of profiles of the temperature, the intrinsic properties and the carrier density”, Int. J. Phys. Sci., 17:3 (2022), 96  crossref
    11. Yazid Yaakob, Wei Ming Lin, Mohamad Saufi Rosmi, Mohd Zamri Mohd Yusop, Subash Sharma, Kar Fei Chan, Toru Asaka, Masaki Tanemura, “Study of structural and electrical behavior of silicon-carbon nanocomposites via in situ transmission electron microscopy”, Materials Today Communications, 32 (2022), 104081  crossref
    12. Artyom Assadillayev, Tatsuki Hinamoto, Minoru Fujii, Hiroshi Sugimoto, Søren Raza, “Thermal near-field tuning of silicon Mie nanoparticles”, Nanophotonics, 10:16 (2021), 4161  crossref
    13. George P. Zograf, Mihail I. Petrov, Sergey V. Makarov, Yuri S. Kivshar, “All-dielectric thermonanophotonics”, Adv. Opt. Photon., 13:3 (2021), 643  crossref
    14. Sujong Chae, Yaobin Xu, Ran Yi, Hyung‐Seok Lim, Dusan Velickovic, Xiaolin Li, Qiuyan Li, Chongmin Wang, Ji‐Guang Zhang, “A Micrometer‐Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon”, Advanced Materials, 33:40 (2021)  crossref
    15. Chia-Ching Huang, Yingying Tang, Marco van der Laan, Jorik van de Groep, A. Femius Koenderink, Kateřina Dohnalová, “Band-Gap Tunability in Partially Amorphous Silicon Nanoparticles Using Single-Dot Correlative Microscopy”, ACS Appl. Nano Mater., 4:1 (2021), 288  crossref
    16. V M Samsonov, A Yu Kartoshkin, I V Talyzin, S A Vasilyev, I A Kaplunov, “On phase diagrams for Au-Si nanosystems: thermodynamic and atomistic simulations”, J. Phys.: Conf. Ser., 1658:1 (2020), 012047  crossref
    17. S. Starikov, I. Gordeev, Y. Lysogorskiy, L. Kolotova, S. Makarov, “Optimized interatomic potential for study of structure and phase transitions in Si-Au and Si-Al systems”, Computational Materials Science, 184 (2020), 109891  crossref
    18. I. V. Talyzin, V. M. Samsonov, “On the prospect of creating memory elements based on silicon nanoparticles”, Izv. vysš. učebn. zaved., Mater. èlektron. teh., 22:2 (2019), 84  crossref
    19. Igor V. Talyzin, Vladimir M. Samsonov, “Outlooks for development of silicon nanoparticle memory cells”, MoEM, 5:4 (2019), 159  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :95
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025