Abstract:
The size dependence of the melting point of Si nanoparticles is investigated using molecular dynamics and thermodynamic simulation based on the Thomson’s formula. The atomistic modeling data obtained using the Stillinger–Weber potential agree with the results reported by other authors and thermodynamic-simulation data and predict a decrease in the melting point Tm of Si nanoparticles with an increase in their reciprocal radius R−1 according to linear law. The available experimental data predict lower Tm values, including the limiting value T(∞)m, which corresponds to the linear extrapolation of experimental points to R−1→0 (to the radius R→∞); the underestimation is 200–300 K as compared with the reference melting point of silicon (1688 K). It is concluded that the molecular-dynamics data on Tm(R−1) obtained using the Stillinger–Weber potential are more adequate than the available experimental data.
Citation:
I. V. Talyzin, M. V. Samsonov, V. M. Samsonov, M. Yu. Pushkar, V. V. Dronnikov, “Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation”, Fizika i Tekhnika Poluprovodnikov, 53:7 (2019), 964–970; Semiconductors, 53:7 (2019), 947–953
\Bibitem{TalSamSam19}
\by I.~V.~Talyzin, M.~V.~Samsonov, V.~M.~Samsonov, M.~Yu.~Pushkar, V.~V.~Dronnikov
\paper Size dependence of the melting point of silicon nanoparticles: molecular dynamics and thermodynamic simulation
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2019
\vol 53
\issue 7
\pages 964--970
\mathnet{http://mi.mathnet.ru/phts5463}
\crossref{https://doi.org/10.21883/FTP.2019.07.47875.8927}
\elib{https://elibrary.ru/item.asp?id=39133324}
\transl
\jour Semiconductors
\yr 2019
\vol 53
\issue 7
\pages 947--953
\crossref{https://doi.org/10.1134/S1063782619070236}
Linking options:
https://www.mathnet.ru/eng/phts5463
https://www.mathnet.ru/eng/phts/v53/i7/p964
This publication is cited in the following 19 articles:
Xiangyu Chen, Nam Q. Le, Paulette Clancy, “Diffusion-Limited Crystal Growth of Gallium Nitride Using Active Machine Learning”, Crystal Growth & Design, 24:7 (2024), 2855
Niklas Wolff, Maren Dworschak, Jan Benedikt, Lorenz Kienle, “Transmission Electron Microscopy Investigation of Self‐assembled 'Si/Mn4Si7‐Alloy' Janus Nanosphere Architectures Produced by a HelixJet Atmospheric Plasma Source”, Part & Part Syst Charact, 41:3 (2024)
Mingdong Liao, Xiebo Hu, Chenghao Zhong, Ping Xu, Xiaodong Wang, Ze Zhang, Peng Zhou, Mingyu Zhang, Zhean Su, Qizhong Huang, “Controlling the Si/C ratio in SiC matrix based on the modified polymethysilane for C/C–SiC composites with enhanced mechanical properties”, Journal of Advanced Ceramics, 13:2 (2024), 220
Jiahao Wu, Jingying Huang, Tonglin Liu, Bareera Raza, Ni Li, Yang Hu, Youkun Tao, Jing Shao, “Construction of Thermally Robust SERS Nanostructure for High-Temperature In Situ Analysis”, ACS Appl. Opt. Mater., 2:8 (2024), 1667
Soyoung Heo, Seulbi Kim, Seung Yeon Lee, In Hye Kwak, Jaeyoon Baik, Heejun Yang, Ji Hun Park, Suyeon Cho, “Thermal-protective and oxygen-resistant nanocoating using silica-nanocomposites for laser thinning of polymorphic molybdenum ditellurides”, Applied Surface Science, 638 (2023), 157958
Chemistry of Semiconductors, 2023, 270
M.Y. Yang, G.H. Tang, Q. Sheng, L. Guo, H. Zhang, “Atomic-level sintering mechanism of silica aerogels at high temperatures: structure evolution and solid thermal conductivity”, International Journal of Heat and Mass Transfer, 199 (2022), 123456
Jianqiang Ma, Sien Wang, Xiao Wan, Dengke Ma, Yue Xiao, Qing Hao, Nuo Yang, “The unrevealed 3D morphological evolution of annealed nanoporous thin films”, Nanoscale, 14:45 (2022), 17072
L. Fedorenko, A. Medvids, V. Yukhymchuk, A. Evtukh, H. Mimura, O. Hreshchuk, L. Grase, S. Soroka, “Amorphous – Crystalline phase transition in nanostructural thin SiOx layers induced by pulsed laser radiation”, Optics & Laser Technology, 148 (2022), 107526
SAVADOGO Mahamadi, Ousséni Fabrice OUEDRAOGO Pegdwindé, OUEDRAOGO Adama, ZIDA Lamine, ZOUNGRANA Martial, ZERBO Issa, “Uncooled PV cell under variable light concentration: Determination of profiles of the temperature, the intrinsic properties and the carrier density”, Int. J. Phys. Sci., 17:3 (2022), 96
Yazid Yaakob, Wei Ming Lin, Mohamad Saufi Rosmi, Mohd Zamri Mohd Yusop, Subash Sharma, Kar Fei Chan, Toru Asaka, Masaki Tanemura, “Study of structural and electrical behavior of silicon-carbon nanocomposites via in situ transmission electron microscopy”, Materials Today Communications, 32 (2022), 104081
George P. Zograf, Mihail I. Petrov, Sergey V. Makarov, Yuri S. Kivshar, “All-dielectric thermonanophotonics”, Adv. Opt. Photon., 13:3 (2021), 643
Sujong Chae, Yaobin Xu, Ran Yi, Hyung‐Seok Lim, Dusan Velickovic, Xiaolin Li, Qiuyan Li, Chongmin Wang, Ji‐Guang Zhang, “A Micrometer‐Sized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon”, Advanced Materials, 33:40 (2021)
Chia-Ching Huang, Yingying Tang, Marco van der Laan, Jorik van de Groep, A. Femius Koenderink, Kateřina Dohnalová, “Band-Gap Tunability in Partially Amorphous Silicon Nanoparticles Using Single-Dot Correlative Microscopy”, ACS Appl. Nano Mater., 4:1 (2021), 288
V M Samsonov, A Yu Kartoshkin, I V Talyzin, S A Vasilyev, I A Kaplunov, “On phase diagrams for Au-Si nanosystems: thermodynamic and atomistic simulations”, J. Phys.: Conf. Ser., 1658:1 (2020), 012047
S. Starikov, I. Gordeev, Y. Lysogorskiy, L. Kolotova, S. Makarov, “Optimized interatomic potential for study of structure and phase transitions in Si-Au and Si-Al systems”, Computational Materials Science, 184 (2020), 109891
I. V. Talyzin, V. M. Samsonov, “On the prospect of creating memory elements based on silicon nanoparticles”, Izv. vysš. učebn. zaved., Mater. èlektron. teh., 22:2 (2019), 84
Igor V. Talyzin, Vladimir M. Samsonov, “Outlooks for development of silicon nanoparticle memory cells”, MoEM, 5:4 (2019), 159