Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2019, Issue 12, Pages 24–27
DOI: https://doi.org/10.17223/2226308X/12/6
(Mi pdma421)
 

This article is cited in 5 scientific papers (total in 5 papers)

Theoretical Foundations of Applied Discrete Mathematics

Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of Russian Federation
b Bauman Moscow State Technical University
Full-text PDF (623 kB) Citations (5)
References:
Abstract: An orthomorphism of a group (X,) is a permutation g:XX such that the mapping xx1g(x) is also a permutation. In the field of symmetric-key cryptography, orthomorphisms of Abelian groups have been used in the Lai–Massey scheme, the FOX family of block ciphers, the quasi-Feistel network, block ciphers in Davies–Meyer mode, and authentication codes. In this paper, we study orthomorphisms, complete mappings and their variations of nonabelian key-addition groups. In the SAFER block cipher, a linear transformation, called the pseudo-Hadamard transformation, has been used to provide the diffusion that a good cipher requires. We describe ten variations of the pseudo-Hadamard transformations on nonabelian groups, which are defined by a permutation g:XX. We have proved that our ten variations are permutations iff g is an orthomorphism or its variation.
Keywords: orthomorphism, complete mapping, nonabelian group, pseudo-Hadamard transformation, SAFER block cipher.
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups”, Prikl. Diskr. Mat. Suppl., 2019, no. 12, 24–27
Citation in format AMSBIB
\Bibitem{PogPud19}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper Variations of orthomorphisms and pseudo-Hadamard transformations on nonabelian groups
\jour Prikl. Diskr. Mat. Suppl.
\yr 2019
\issue 12
\pages 24--27
\mathnet{http://mi.mathnet.ru/pdma421}
\crossref{https://doi.org/10.17223/2226308X/12/6}
\elib{https://elibrary.ru/item.asp?id=41153846}
Linking options:
  • https://www.mathnet.ru/eng/pdma421
  • https://www.mathnet.ru/eng/pdma/y2019/i12/p24
  • This publication is cited in the following 5 articles:
    1. S. V. Spiridonov, “Ortomorfizmy grupp s minimalno vozmozhnymi poparnymi rasstoyaniyami”, PDM, 2024, no. 66, 45–59  mathnet  crossref
    2. B. A. Pogorelov, M. A. Pudovkina, “Multipodstanovki i sovershennaya rasseivaemost razbienii”, PDM. Prilozhenie, 2023, no. 16, 8–11  mathnet  crossref
    3. B. A. Pogorelov, M. A. Pudovkina, “Multipodstanovki na dekartovom proizvedenii grupp i ikh svoistva”, Matem. vopr. kriptogr., 14:4 (2023), 111–142  mathnet  crossref
    4. B. A. Pogorelov, M. A. Pudovkina, “Ob ARX-podobnykh shifrsistemakh na baze razlichnykh kodirovok neabelevykh regulyarnykh 2-grupp s tsiklicheskoi podgruppoi indeksa 2”, PDM. Prilozhenie, 2021, no. 14, 100–104  mathnet  crossref
    5. B. A. Pogorelov, M. A. Pudovkina, “O klasse stepennykh kusochno-affinnykh podstanovok na neabelevoi gruppe poryadka 2m, obladayuschei tsiklicheskoi podgruppoi indeksa dva”, PDM. Prilozhenie, 2019, no. 12, 27–29  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :110
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025