Loading [MathJax]/jax/output/CommonHTML/jax.js
Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2023, Number 60, Pages 13–29
DOI: https://doi.org/10.17223/20710410/60/2
(Mi pdm799)
 

Theoretical Backgrounds of Applied Discrete Mathematics

Properties of exponential transformations of finite field

A. A. Gruba

Certification Research Center, Moscow, Russia
References:
Abstract: We consider exponential transformations acting on the set Vn(p) of all vectors of length n over a prime field P0=GF(p) (p is a prime number). For every element γP=GF(pn) with a minimal polynomial F(x) of degree n over the field P0, consider the mapping ˆs:PP, where ˆs(0)=0 and if x0, then ˆs(x)=γσ(x), σ:P{0,1,,pn1} is a mapping that matches each element xP with the number σ(x)=x0+px1++pnxn1, x=(x0,,xn1) is given by its coordinates in the basis α of the vector space PP0. Transformation s=τ1ˆsϰ, where τ:PVn(p) matches xP to its set of coordinates in the basis α of PP0 and the mapping ϰ:PVn(p) matches x to its set of coordinates in the dual basis β of the basis α, is called an exponential transformation. We prove estimates for the degree of nonlinearity for an exponential transformation s: (p1)(nlogp(n+1))degsn(p1)1, where z is the minimum integer greater or equal to z. It is proved that degs=n(p1)1 if and only if the system γ/(γ1),(γ/(γ1))p,,(γ/(γ1))pn1 is a basis of the vector space PP0. We also study some properties of the linear and differential characteristics of the transformation s.
Keywords: finite fields, linear recurrence, difference characteristic, linear characteristic.
Document Type: Article
UDC: 511.321 + 519.111.1
Language: Russian
Citation: A. A. Gruba, “Properties of exponential transformations of finite field”, Prikl. Diskr. Mat., 2023, no. 60, 13–29
Citation in format AMSBIB
\Bibitem{Gru23}
\by A.~A.~Gruba
\paper Properties of exponential transformations of~finite~field
\jour Prikl. Diskr. Mat.
\yr 2023
\issue 60
\pages 13--29
\mathnet{http://mi.mathnet.ru/pdm799}
\crossref{https://doi.org/10.17223/20710410/60/2}
Linking options:
  • https://www.mathnet.ru/eng/pdm799
  • https://www.mathnet.ru/eng/pdm/y2023/i2/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :101
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025