Nuclear Physics B
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nuclear Physics B, 2012, Volume 855, Issue 1, Pages 100–127
DOI: https://doi.org/10.1016/j.nuclphysb.2011.10.005
(Mi nphb12)
 

This article is cited in 27 scientific papers (total in 27 papers)

Haldane limits via Lagrangian embeddings

D. Bykovab

a Steklov Mathematical Institute, Gubkina str. 8, 119991 Moscow, Russia
b School of Mathematics, Trinity College, Dublin 2, Ireland
Citations (27)
Abstract: In the present paper we revisit the so-called Haldane limit, i.e. a particular continuum limit, which leads from a spin chain to a sigma model. We use the coherent state formulation of the path integral to reduce the problem to a semiclassical one, which leads us to the observation that the Haldane limit is closely related to a Lagrangian embedding into the classical phase space of the spin chain. Using this property, we find a spin chain whose limit produces a relativistic sigma model with target space the manifold of complete flags U(3)/U(1)3. We discuss possible other future applications of Lagrangian/isotropic embeddings in this context.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-00296-a
11-01-12037-ofi-m
Ministry of Education and Science of the Russian Federation NSh-8265.2010.1
Irish Research Council
My work was supported by the Irish Research Council for Science, Engineering and Technology, in part by grants RFBR 11-01-00296-a, 11-01-12037-ofi-m-2011 and in part by grant for the Support of Leading Scientific Schools of Russia NSh-8265.2010.1.
Received: 28.04.2011
Revised: 02.10.2011
Accepted: 06.10.2011
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/nphb12
  • This publication is cited in the following 27 articles:
    1. Yuki Amari, Toshiaki Fujimori, Muneto Nitta, Keisuke Ohashi, “String junctions in flag manifold sigma models”, Phys. Rev. D, 111:6 (2025)  crossref
    2. Dmitri Bykov, Andrew Kuzovchikov, “The classical and quantum particle on a flag manifold”, Class. Quantum Grav., 41:20 (2024), 205009  crossref
    3. Mendel Nguyen, Yuya Tanizaki, Mithat Ünsal, “Winding θ and destructive interference of instantons”, J. High Energ. Phys., 2023:9 (2023)  crossref
    4. L. Herviou, S. Capponi, P. Lecheminant, “Even-odd effects in the J1-J2 SU(N) Heisenberg spin chain”, Phys. Rev. B, 107:20 (2023)  crossref
    5. Ian Affleck, Dmitri Bykov, Kyle Wamer, “Flag manifold sigma models: Spin chains and integrable theories”, Phys. Rep., 953 (2022), 1–93  mathnet  crossref  isi  scopus
    6. Yahya Alavirad, Maissam Barkeshli, “Anomalies and unusual stability of multicomponent Luttinger liquids in Zn×Zn spin chains”, Phys. Rev. B, 104:4 (2021)  crossref
    7. Ryohei Kobayashi, Yasunori Lee, Ken Shiozaki, Yuya Tanizaki, “Topological terms of (2+1)d flag-manifold sigma models”, J. High Energ. Phys., 2021:8 (2021)  crossref
    8. Itsuki Takahashi, Yuya Tanizaki, “Sigma-model analysis of SU(3) antiferromagnetic spins on the triangular lattice”, Phys. Rev. B, 104:23 (2021)  crossref
    9. Tin Sulejmanpasic, Daniel Göschl, Christof Gattringer, “First-Principles Simulations of 1+1D Quantum Field Theories at θ=π and Spin Chains”, Phys. Rev. Lett., 125:20 (2020)  crossref
    10. P. Fromholz, P. Lecheminant, “Symmetry-protected topological phases in the SU(N) Heisenberg spin chain: A Majorana fermion approach”, Phys. Rev. B, 102:9 (2020)  crossref
    11. Kyle Wamer, Ian Affleck, “Mass generation by fractional instantons in SU( n ) chains”, Phys. Rev. B, 101:24 (2020)  crossref
    12. Kyle Wamer, Miklós Lajkó, Frédéric Mila, Ian Affleck, “Generalization of the Haldane conjecture to SU(n) chains”, Nuclear Physics B, 952 (2020), 114932  crossref
    13. Kyle Wamer, Ian Affleck, “Flag manifold sigma models from SU(n) chains”, Nuclear Physics B, 959 (2020), 115156  crossref
    14. D. Pavshinkin, “Grassmannian and flag sigma models on interval: phase structure and L-dependence”, J. High Energ. Phys., 2019:12 (2019)  crossref
    15. Kyle Wamer, Francisco H. Kim, Miklós Lajkó, Frédéric Mila, Ian Affleck, “Self-conjugate representation SU(3) chains”, Phys. Rev. B, 100:11 (2019)  crossref
    16. Dmitri Bykov, “Flag manifold σ-models: The 1N-expansion and the anomaly two-form”, Nuclear Phys. B, 941 (2019), 316–360  mathnet  crossref  isi  scopus
    17. Miklós Lajkó, Kyle Wamer, Frédéric Mila, Ian Affleck, “Corrigendum to “Generalization of the Haldane conjecture to SU(3) chains” [Nucl. Phys. B 924 (2017) 508–577]”, Nuclear Physics B, 949 (2019), 114781  crossref
    18. Kantaro Ohmori, Nathan Seiberg, Shu-Heng Shao, “Sigma models on flags”, SciPost Phys., 6:2 (2019)  crossref
    19. Masaru Hongo, Tatsuhiro Misumi, Yuya Tanizaki, “Phase structure of the twisted SU(3)/U(1)2 flag sigma model on ℝ × S1”, J. High Energ. Phys., 2019:2 (2019)  crossref
    20. Tatsuhiro Misumi, Yuya Tanizaki, Mithat Ünsal, “Fractional θ angle, 't Hooft anomaly, and quantum instantons in charge-q multi-flavor Schwinger model”, J. High Energ. Phys., 2019:7 (2019)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025