|
NONLINEAR SYSTEMS IN ROBOTICS
Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle
V. N. Smirnova, K. M. Kazistovaa, I. A. Sudakovb, V. Leplatc, A. V. Gasnikovcdea, A. V. Lobanovfga a Moscow Institute of Physics and Technology,
Institutskiy per. 9, Dolgoprudny, 141701 Russia
b Higher School of Economics,
ul. Myasnitskaya 20, Moscow, 101000 Russia
c Innopolis University,
ul. Universitetskaya 1, Innopolis, 420500 Russia
d Caucasus Mathematical Center, Adyghe State University,
ul. Pervomaiskaya 208, Maykop, 385000 Russia
e Steklov Mathematical Institute of Russian Academy of Sciences,
ul. Gubkina 8, Moscow, 119991 Russia
f Skolkovo Institute of Science and Technology,
Bolshoy Boulevard 30, bld. 1, Moscow, 121205 Russia
g ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia,
ul. Alexandra Solzhenitsyna 25, Moscow, 109004 Russia
Abstract:
Black-box optimization, a rapidly growing field, faces challenges due to limited knowledge of
the objective function’s internal mechanisms. One promising approach to addressing this is the
Stochastic Order Oracle Concept. This concept, similar to other Order Oracle Concepts, relies
solely on relative comparisons of function values without requiring access to the exact values.
This paper presents a novel, improved estimation of the covariance matrix for the asymptotic
convergence of the Stochastic Order Oracle Concept. Our work surpasses existing research in
this domain by offering a more accurate estimation of asymptotic convergence rate. Finally,
numerical experiments validate our theoretical findings, providing strong empirical support for
our proposed approach.
Keywords:
stochastic order oracle, stochastic optimization, asymptotic convergence analysis
Received: 02.11.2024 Accepted: 17.12.2024
Citation:
V. N. Smirnov, K. M. Kazistova, I. A. Sudakov, V. Leplat, A. V. Gasnikov, A. V. Lobanov, “Asymptotic Analysis of the Ruppert – Polyak Averaging for Stochastic Order Oracle”, Rus. J. Nonlin. Dyn., 20:5 (2024), 961–978
Linking options:
https://www.mathnet.ru/eng/nd933 https://www.mathnet.ru/eng/nd/v20/i5/p961
|
Statistics & downloads: |
Abstract page: | 36 | Full-text PDF : | 15 | References: | 8 |
|