Loading [MathJax]/jax/output/SVG/config.js
Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2024, Volume 20, Number 5, Pages 875–893
DOI: https://doi.org/10.20537/nd241215
(Mi nd928)
 

NONLINEAR SYSTEMS IN ROBOTICS

Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem

V. O. Krivchenkoa, A. V. Gasnikovabc, D. A. Kovalevd

a Moscow Institute of Physics ans Technology, Institutskiy per. 9, Dolgoprudny, 141701 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 117966 Russia
c Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia
d Yandex Research, ul. L’va Tolstogo 16, Moscow, 119021 Russia
References:
Abstract: In this paper we present interpolation conditions for several important convex-concave function classes: nonsmooth convex-concave functions, conditions for difference of strongly-convex functions in a form that contains oracle information exclusively and smooth convex-concave functions with a bilinear coupling term. Then we demonstrate how the performance estimation problem approach can be adapted to analyze the exact worst-case convergence behavior of first-order methods applied to composite bilinear-coupled min-max problems. Using the performance estimation problem approach, we estimate iteration complexities for several first-order fixed-step methods, Sim-GDA and Alt-GDA, which are applied to smooth convex-concave functions with a bilinear coupling term.
Keywords: saddle point, convex-concave functions, bilinear coupling, performance estimation problem, interpolation conditions
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSMG-2024-0011
The research is supported by the Ministry of Science and Higher Education of the Russian Federation (Goszadaniye), project No. FSMG-2024-0011.
Received: 31.10.2024
Accepted: 09.12.2024
Document Type: Article
MSC: 65K15
Language: English
Citation: V. O. Krivchenko, A. V. Gasnikov, D. A. Kovalev, “Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem”, Rus. J. Nonlin. Dyn., 20:5 (2024), 875–893
Citation in format AMSBIB
\Bibitem{KriGasKov24}
\by V. O. Krivchenko, A. V. Gasnikov, D. A. Kovalev
\paper Convex-Concave Interpolation and Application of PEP to the Bilinear-Coupled Saddle Point Problem
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 5
\pages 875--893
\mathnet{http://mi.mathnet.ru/nd928}
\crossref{https://doi.org/10.20537/nd241215}
Linking options:
  • https://www.mathnet.ru/eng/nd928
  • https://www.mathnet.ru/eng/nd/v20/i5/p875
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :12
    References:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025