Loading [MathJax]/jax/output/SVG/config.js
Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Journal of Nonlinear Dynamics, 2024, Volume 20, Number 1, Pages 127–140
DOI: https://doi.org/10.20537/nd240302
(Mi nd884)
 

Nonlinear physics and mechanics

On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case

B. S. Bardin

Moscow Aviation Institute (National Research University), Volokolamskoye sh. 4, Moscow, 125080 Russia
References:
Abstract: The problem of the orbital stability of periodic motions of a heavy rigid body with a fixed point is investigated. The periodic motions are described by a particular solution obtained by D. N. Bobylev and V. A. Steklov and lie on the zero level set of the area integral. The problem of nonlinear orbital stability is studied. It is shown that the domain of possible parameter values is separated into two regions: a region of orbital stability and a region of orbital instability. At the boundary of these regions, the orbital instability of the periodic motions takes place.
Keywords: Bobylev – Steklov case, periodic motions, orbital stability, symplectic map, normal form, resonances
Funding agency Grant number
Russian Science Foundation 22-21-00729
This work was supported by the grant of the Russian Scientific Foundation (project Nr. 22-21-00729) at the Moscow Aviation Institute (National Research University).
Received: 11.12.2023
Accepted: 09.01.2024
Document Type: Article
Language: English
Citation: B. S. Bardin, “On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case”, Rus. J. Nonlin. Dyn., 20:1 (2024), 127–140
Citation in format AMSBIB
\Bibitem{Bar24}
\by B. S. Bardin
\paper On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 1
\pages 127--140
\mathnet{http://mi.mathnet.ru/nd884}
\crossref{https://doi.org/10.20537/nd240302}
Linking options:
  • https://www.mathnet.ru/eng/nd884
  • https://www.mathnet.ru/eng/nd/v20/i1/p127
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :17
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025