Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2017, Volume 13, Number 2, Pages 277–297
DOI: https://doi.org/10.20537/nd1702009
(Mi nd565)
 

This article is cited in 15 scientific papers (total in 15 papers)

Translated papers

Regular and chaotic dynamics in the rubber model of a Chaplygin top

A. V. Borisova, A. O. Kazakovb, E. N. Pivovarovaa

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034, Russia
b Higher School of Economics National Research University, ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155, Russia
References:
Abstract: This paper is concerned with the rolling motion of a dynamically asymmetric unbalanced ball (Chaplygin top) in a gravitational field on a plane under the assumption that there is no slipping and spinning at the point of contact. We give a description of strange attractors existing in the system and discuss in detail the scenario of how one of them arises via a sequence of perioddoubling bifurcations. In addition, we analyze the dynamics of the system in absolute space and show that in the presence of strange attractors in the system the behavior of the point of contact considerably depends on the characteristics of the attractor and can be both chaotic and nearly quasi-periodic.
Keywords: Chaplygin top, nonholonomic constraint, rubber model, strange attractor, bifurcation, trajectory of the point of contact.
Received: 21.11.2017
Accepted: 06.12.2017
English version:
Regular and Chaotic Dynamics, 2016, Volume 21, Issue 7-8, Pages 885–901
DOI: https://doi.org/10.1134/S156035471607011X
Bibliographic databases:
Document Type: Article
UDC: 531.3
MSC: 37J60, 37G35, 70E18
Language: Russian
Citation: A. V. Borisov, A. O. Kazakov, E. N. Pivovarova, “Regular and chaotic dynamics in the rubber model of a Chaplygin top”, Nelin. Dinam., 13:2 (2017), 277–297; Regular and Chaotic Dynamics, 21:7-8 (2016), 885–901
Citation in format AMSBIB
\Bibitem{BorKazPiv17}
\by A.~V.~Borisov, A.~O.~Kazakov, E.~N.~Pivovarova
\paper Regular and chaotic dynamics in the rubber model of a Chaplygin top
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 2
\pages 277--297
\mathnet{http://mi.mathnet.ru/nd565}
\crossref{https://doi.org/10.20537/nd1702009}
\elib{https://elibrary.ru/item.asp?id=29443382}
\transl
\jour Regular and Chaotic Dynamics
\yr 2016
\vol 21
\issue 7-8
\pages 885--901
\crossref{https://doi.org/10.1134/S156035471607011X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016012678}
Linking options:
  • https://www.mathnet.ru/eng/nd565
  • https://www.mathnet.ru/eng/nd/v13/i2/p277
  • This publication is cited in the following 15 articles:
    1. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
    2. Evgeniya A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Commun. Nonlinear Sci. Numer. Simul., 117 (2023), 106920–15  mathnet  crossref  isi
    3. E. A. Mikishanina, “Dinamika kacheniya diska s naklonnoi skolzyaschei oporoi”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 3, 45–56  mathnet  crossref
    4. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    5. Alexey V. Borisov, Evgeniya A. Mikishanina, “Two Nonholonomic Chaotic Systems. Part II. On the Rolling of a Nonholonomic Bundle of Two Bodies”, Regul. Chaotic Dyn., 25:4 (2020), 392–400  mathnet  crossref  isi  scopus
    6. Borislav Gajić, Božidar Jovanović, “Nonholonomic connections, time reparametrizations, and integrability of the rolling ball over a sphere”, Nonlinearity, 32:5 (2019), 1675  crossref
    7. Ivan R. Garashchuk, Dmitry I. Sinelshchikov, Nikolay A. Kudryashov, “Nonlinear Dynamics of a Bubble Contrast Agent Oscillating near an Elastic Wall”, Regul. Chaotic Dyn., 23:3 (2018), 257–272  mathnet  crossref  isi  scopus
    8. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russ. J. Math. Phys., 25:4 (2018), 423  crossref
    9. Sergey P. Kuznetsov, “Regular and Chaotic Dynamics of a Chaplygin Sleigh due to Periodic Switch of the Nonholonomic Constraint”, Regul. Chaotic Dyn., 23:2 (2018), 178–192  mathnet  crossref  isi  scopus
    10. Yu. L. Karavaev, A. V. Klekovkin, A. A. Kilin, “Dinamicheskaya model treniya kacheniya sfericheskikh tel po ploskosti bez proskalzyvaniya”, Nelineinaya dinam., 13:4 (2017), 599–609  mathnet  crossref  elib
    11. Sergey P. Kuznetsov, “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL, 118:1 (2017), 10007  crossref
    12. Alexander A. Kilin, Elena N. Pivovarova, “The Rolling Motion of a Truncated Ball Without Slipping and Spinning on a Plane”, Regul. Chaotic Dyn., 22:3 (2017), 298–317  mathnet  crossref  isi  scopus
    13. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  mathnet  crossref  crossref  isi  scopus
    14. Alexander P. Ivanov, “On Final Motions of a Chaplygin Ball on a Rough Plane”, Regul. Chaotic Dyn., 21:7 (2016), 804–810  mathnet  crossref  isi  scopus
    15. Alexey V. Borisov, Alexey O. Kazakov, Igor R. Sataev, “Spiral Chaos in the Nonholonomic Model of a Chaplygin Top”, Regul. Chaotic Dyn., 21:7 (2016), 939–954  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:1720
    Full-text PDF :107
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025