Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2017, Volume 13, Number 2, Pages 207–226
DOI: https://doi.org/10.20537/nd1702005
(Mi nd561)
 

This article is cited in 1 scientific paper (total in 1 paper)

Original papers

On stability of motion of the Maxwell pendulum

A. P. Markeevab

a Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region, 141701, Russia
b A.Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101-1, Moscow, 119526, Russia
Full-text PDF (374 kB) Citations (1)
References:
Abstract: We investigate the stability of motion of the Maxwell pendulum in a uniform gravity field [1, 2]. The threads on which the axis and the disk of the pendulum have been suspended are assumed to be weightless and inextensible, and the characteristic linear size of the disk is assumed to be small compared to the lengths of threads. In the unperturbed motion the angle the threads make with the vertical is zero, and the disk moves along the vertical and rotates around its horizontal axis. The nonlinear problem of stability of this motion is solved with respect to small deviations of the threads from the vertical. By means of canonical transformations and the Poincaré section surface method, the problem is reduced to the study of stability of the fixed point of the area-preserving mapping of the plane into itself. In the space of dimensionless parameters of the problem, regions of stability and instability are found.
Keywords: stability, map, canonical transformations.
Funding agency Grant number
Russian Science Foundation 14-21-00068
Received: 23.01.2017
Accepted: 10.04.2017
Bibliographic databases:
Document Type: Article
UDC: 531.36, 531.53
MSC: 70H05, 70H15, 70E50
Language: Russian
Citation: A. P. Markeev, “On stability of motion of the Maxwell pendulum”, Nelin. Dinam., 13:2 (2017), 207–226
Citation in format AMSBIB
\Bibitem{Mar17}
\by A.~P.~Markeev
\paper On stability of motion of the Maxwell pendulum
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 2
\pages 207--226
\mathnet{http://mi.mathnet.ru/nd561}
\crossref{https://doi.org/10.20537/nd1702005}
\elib{https://elibrary.ru/item.asp?id=29443378}
Linking options:
  • https://www.mathnet.ru/eng/nd561
  • https://www.mathnet.ru/eng/nd/v13/i2/p207
  • This publication is cited in the following 1 articles:
    1. G. M. Rozenblat, M. V. Yashina, “Chislenno-analiticheskoe issledovanie dvizheniya mayatnika Maksvella”, Kompyuternye issledovaniya i modelirovanie, 16:1 (2024), 123–136  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :184
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025