Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2016, Volume 12, Number 3, Pages 369–383
DOI: https://doi.org/10.20537/nd1603006
(Mi nd533)
 

This article is cited in 8 scientific papers (total in 8 papers)

Original papers

On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)

E. S. Shalimova

Research Institute of Mechanics, Lomonosov Moscow State University, Michurinsky pr. 1, Moscow, Russia, 119192
Full-text PDF (542 kB) Citations (8)
References:
Abstract: The motion of a heavy point on the surface of a rotating sphere is considered. It is assumed that the rotation axis does not coincide with the vertical diameter of the sphere and the angular velocity of the sphere is constant. The Lagrange equations for this system are derived. Sets of relative equilibria are found and their dependence on the parameters of the system is studied in extreme cases when the magnitude of the angular velocity or the distance between the rotation axis and the center of the sphere is large. The results are represented in graphic form. The same graphic series are also numerically plotted in the general case.
Keywords: motion of a particle on a sphere, dry friction, relative equilibria.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00625 а
Received: 27.12.2015
Accepted: 24.07.2016
Bibliographic databases:
Document Type: Article
UDC: 531.36
MSC: 70F40
Language: Russian
Citation: E. S. Shalimova, “On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)”, Nelin. Dinam., 12:3 (2016), 369–383
Citation in format AMSBIB
\Bibitem{Sha16}
\by E.~S.~Shalimova
\paper On the motion of a material point on a rotating sphere with dry friction (the case of the vertical axis)
\jour Nelin. Dinam.
\yr 2016
\vol 12
\issue 3
\pages 369--383
\mathnet{http://mi.mathnet.ru/nd533}
\crossref{https://doi.org/10.20537/nd1603006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1834792}
\elib{https://elibrary.ru/item.asp?id=27328720}
Linking options:
  • https://www.mathnet.ru/eng/nd533
  • https://www.mathnet.ru/eng/nd/v12/i3/p369
  • This publication is cited in the following 8 articles:
    1. A. A. Burov, V. I. Nikonov, E. S. Shalimova, “On the Motion of a Point Particle on a Homogeneous Gravitating Ball with a Spherical Inclusion”, Prikladnaâ matematika i mehanika, 88:2 (2024), 172  crossref
    2. A. A. Burov, V. I. Nikonov, “On the Relative Equilibria of a Heavy Bead on a Uniformly Rotating Rough Spoke”, Mech. Solids, 58:3 (2023), 748  crossref
    3. A. A. Burov, V. I. Nikonov, “Relative Equilibria of a Heavy Point on a Uniformly Rotating Inclined Plane”, Mech. Solids, 58:1 (2023), 131  crossref
    4. A. A. Burov, V. I. Nikonov, “Relative Equilibria of a Heavy Point on a Uniformly Rotating Inclined Plane”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2023, no. 1, 156  crossref
    5. A. A. Burov, V. I. Nikonov, “On the Relative Equilibria of a Heavy Bead on a Uniformly Rotating Rough Spoke”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2023, no. 3, 99  crossref
    6. A. A. Burov, V. I. Nikonov, E. S. Shalimova, “On Relative Equilibria on the Surface of a Spherical Cavity Inside a Uniformly Rotating Gravitating Ball”, Mech. Solids, 57:8 (2022), 1862  crossref
    7. A. A. Burov, V. I. Nikonov, E. S. Shalimova, “On the Motion of a Point Particle on a Homogeneous Gravitating Ball with a Spherical Cavity in the Presence of Dry Friction”, Mech. Solids, 56:8 (2021), 1587  crossref
    8. Aleksandr Burov, Ivan Kosenko, Ekaterina Shalimova, “OB OTNOSITELNYKh RAVNOVESIYaKh MASSIVNOI TOChKI NA RAVNOMERNO VRASchAYuSchEMSYa ASTEROIDE”, Doklady Akademii nauk, 2017, no. 3, 269  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:235
    Full-text PDF :71
    References:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025