Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2014, Volume 10, Number 4, Pages 497–511 (Mi nd460)  

This article is cited in 13 scientific papers (total in 13 papers)

The kinematic control model for a spherical robot with an unbalanced internal omniwheel platform

Alexander A. Kilina, Yury L. Karavaevb

a Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b M. T. Kalashnikov Izhevsk State Technical University, Studencheskaya st. 7, Izhevsk, 426069, Russia
References:
Abstract: The kinematic control model for a spherical robot with an internal omniwheel platform is presented. We consider singularities of control of spherical robot with an unbalanced internal omniwheel platform. The general algorithm of control of spherical robot according to the kinematical quasi-static model and controls for simple trajectories (a straight line and in a circle) are presented. Experimental investigations have been carried out for all introduced control algorithms.
Keywords: spherical robot, kinematic model, nonholonomic constraint, omniwheel, displacement of center of mass.
Received: 19.11.2014
Revised: 03.12.2014
Document Type: Article
UDC: 62.529
MSC: 93B18, 93B52
Language: Russian
Citation: Alexander A. Kilin, Yury L. Karavaev, “The kinematic control model for a spherical robot with an unbalanced internal omniwheel platform”, Nelin. Dinam., 10:4 (2014), 497–511
Citation in format AMSBIB
\Bibitem{KilKar14}
\by Alexander~A.~Kilin, Yury~L.~Karavaev
\paper The kinematic control model for a spherical robot with an unbalanced internal omniwheel platform
\jour Nelin. Dinam.
\yr 2014
\vol 10
\issue 4
\pages 497--511
\mathnet{http://mi.mathnet.ru/nd460}
Linking options:
  • https://www.mathnet.ru/eng/nd460
  • https://www.mathnet.ru/eng/nd/v10/i4/p497
  • This publication is cited in the following 13 articles:
    1. B. I. Adamov, “Geometry and Kinematics of the Mecanum Wheel on a Plane and a Sphere”, Rus. J. Nonlin. Dyn., 20:1 (2024), 43–78  mathnet  crossref
    2. E. A. Mikishanina, “Omnikolesnaya realizatsiya zadachi Suslova s reonomnoi svyazyu: dinamicheskaya model i upravlenie”, Vestnik rossiiskikh universitetov. Matematika, 29:147 (2024), 296–308  mathnet  crossref
    3. A. Y. Shamin, A. A. Rachkov, “On the Motion of a Vibrating Robot on a Horizontal Plane with Anisotropic Friction”, Rus. J. Nonlin. Dyn., 20:5 (2024), 945–959  mathnet  crossref
    4. E. V. Vetchanin, I. S. Mamaev, “Chislennyi analiz periodicheskikh upravlenii vodnogo robota neizmennoi formy”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 644–660  mathnet  crossref  mathscinet
    5. Yu. L. Karavaev, “Spherical Robots: An Up-to-Date Overview of Designs and Features”, Rus. J. Nonlin. Dyn., 18:4 (2022), 709–750  mathnet  crossref  mathscinet
    6. G. R. Saypulaev, B. I. Adamov, A. I. Kobrin, “Comparative Analysis of the Dynamics of a Spherical Robot with a Balanced Internal Platform Taking into Account Different Models of Contact Friction”, Rus. J. Nonlin. Dyn., 18:5 (2022), 803–815  mathnet  crossref  mathscinet
    7. A. S. Andreev, O. A. Peregudova, “On Global Trajectory Tracking Control for an Omnidirectional Mobile Robot with a Displaced Center of Mass”, Rus. J. Nonlin. Dyn., 16:1 (2020), 115–131  mathnet  crossref  elib
    8. Elizaveta M. Artemova, Yury L. Karavaev, Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of a Spherical Robot with Variable Moments of Inertia and a Displaced Center of Mass”, Regul. Chaotic Dyn., 25:6 (2020), 689–706  mathnet  crossref  mathscinet
    9. Klekovkin V A., “Simulation of the Motion of a Propellerless Mobile Robot Controlled By Rotation of the Internal Rotor”, Vestn. Udmurt. Univ.-Mat. Mekh. Kompyuternye Nauk., 30:4 (2020), 645–656  crossref  mathscinet  isi  scopus
    10. Andrey A. Ardentov, Yury L. Karavaev, Kirill S. Yefremov, “Euler Elasticas for Optimal Control of the Motion of Mobile Wheeled Robots: the Problem of Experimental Realization”, Regul. Chaotic Dyn., 24:3 (2019), 312–328  mathnet  crossref
    11. Yu. L. Karavaev, A. A. Kilin, “Dinamika sferorobota s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinam., 11:1 (2015), 187–204  mathnet  elib
    12. E. N. Pivovarova, A. V. Klekovkin, “Vliyanie treniya kacheniya na upravlyaemoe dvizhenie robota-kolesa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:4 (2015), 583–592  mathnet  elib
    13. Alexey V. Borisov, Alexander A. Kilin, Ivan S. Mamaev, “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172  mathnet  crossref  mathscinet  zmath  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :127
    References:77
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025