Abstract:
We prove the existence and uniqueness of positive radially symmetric solutions of the Dirichlet problem for a nonlinear elliptic system of second order. A numerical method for constructing such solutions is also given.
Keywords:
nonlinear elliptic system of second order, radially symmetric function, Dirichlet problem, Cauchy problem, test function, blow-up of global solutions.
Citation:
E. I. Abduragimov, “Uniqueness of Positive Radially Symmetric Solutions of the Dirichlet Problem for a Nonlinear Elliptic System of Second Order”, Mat. Zametki, 93:1 (2013), 3–12; Math. Notes, 93:1 (2013), 3–11
\Bibitem{Abd13}
\by E.~I.~Abduragimov
\paper Uniqueness of Positive Radially Symmetric Solutions of the Dirichlet Problem for a Nonlinear Elliptic System of Second Order
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 1
\pages 3--12
\mathnet{http://mi.mathnet.ru/mzm9194}
\crossref{https://doi.org/10.4213/mzm9194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205941}
\zmath{https://zbmath.org/?q=an:06158156}
\elib{https://elibrary.ru/item.asp?id=20731655}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 1
\pages 3--11
\crossref{https://doi.org/10.1134/S000143461301001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900001}
\elib{https://elibrary.ru/item.asp?id=20431929}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874566551}
Linking options:
https://www.mathnet.ru/eng/mzm9194
https://doi.org/10.4213/mzm9194
https://www.mathnet.ru/eng/mzm/v93/i1/p3
This publication is cited in the following 2 articles:
Kozhanov I A., Dyuzheva V A., “Non-Local Problems With Integral Displacement For High-Order Parabolic Equations”, Bull. Irkutsk State Univ.-Ser. Math., 36 (2021), 14–28
E. I. Abduragimov, “Positive Radially Symmetric Solution of the Dirichlet Problem for a Nonlinear Elliptic System with p-Laplacian”, Math. Notes, 100:5 (2016), 649–659