Abstract:
We consider repetition-free Boolean functions in the basis {&,∨,⊕,−}, and prove a formula expressing the number of such functions of n variables as a product of Fibonacci numbers. These products are estimated; as a result, we obtain asymptotic estimates for the number of repetition-free Boolean functions. These estimates involve Euler numbers of second order and can be reduced by well-known methods to the form of an exponential-power series. These estimates can be used to construct the final asymptotics of the number of repetition-free Boolean functions in the full binary basis.
Keywords:
repetition-free Boolean function, full binary basis, binary function, Fibonacci numbers, Euler numbers, index preserving structure.
Citation:
O. V. Zubkov, “Refined Estimates of the Number of Repetition-Free Boolean Functions in the Full Binary Basis {&,∨,⊕,−}”, Mat. Zametki, 87:5 (2010), 721–733; Math. Notes, 87:5 (2010), 687–699
\Bibitem{Zub10}
\by O.~V.~Zubkov
\paper Refined Estimates of the Number of Repetition-Free Boolean Functions in the Full Binary Basis $\{\&,\vee,\oplus,-\}$
\jour Mat. Zametki
\yr 2010
\vol 87
\issue 5
\pages 721--733
\mathnet{http://mi.mathnet.ru/mzm8720}
\crossref{https://doi.org/10.4213/mzm8720}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766586}
\transl
\jour Math. Notes
\yr 2010
\vol 87
\issue 5
\pages 687--699
\crossref{https://doi.org/10.1134/S0001434610050081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279600700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954399701}
Linking options:
https://www.mathnet.ru/eng/mzm8720
https://doi.org/10.4213/mzm8720
https://www.mathnet.ru/eng/mzm/v87/i5/p721
This publication is cited in the following 1 articles:
V. A. Voblyi, “On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\&,\lor,\oplus,\lnot\}$”, Discrete Math. Appl., 27:1 (2017), 55–56