Abstract:
A solution of Stechkin's problem concerning the approximation in L[0,infty) of the first-order differentiation operator in the class of functions of arbitrary bounded variation; the exact constant in the inequality ‖f′‖⩽K(‖f‖∞⋁0f′)1/2 is found.
Citation:
V. I. Berdyshev, “Best approximations in L[0,infty) of the differentiation operator”, Mat. Zametki, 9:5 (1971), 477–481; Math. Notes, 9:5 (1971), 275–277
\Bibitem{Ber71}
\by V.~I.~Berdyshev
\paper Best approximations in $L_[0,infty)$ of the differentiation operator
\jour Mat. Zametki
\yr 1971
\vol 9
\issue 5
\pages 477--481
\mathnet{http://mi.mathnet.ru/mzm7032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=285847}
\zmath{https://zbmath.org/?q=an:0227.41008|0216.13701}
\transl
\jour Math. Notes
\yr 1971
\vol 9
\issue 5
\pages 275--277
\crossref{https://doi.org/10.1007/BF01094351}
Linking options:
https://www.mathnet.ru/eng/mzm7032
https://www.mathnet.ru/eng/mzm/v9/i5/p477
This publication is cited in the following 6 articles:
V. V. Arestov, R. R. Akopyan, “Zadacha Stechkina o nailuchshem priblizhenii neogranichennogo operatora ogranichennymi i rodstvennye ei zadachi”, Tr. IMM UrO RAN, 26, no. 4, 2020, 7–31
Vitalii Arestov, Maria Filatova, “Best approximation of the differentiation operator in the space L2 on the semiaxis”, Journal of Approximation Theory, 187 (2014), 65
V. V. Arestov, M. A. Filatova, “The best approximation of the differentiation operator by linear bounded operators in the space L 2 on the semiaxis”, Dokl. Math., 90:2 (2014), 592
V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126
Z. Ditzian, “Discrete and shift Kolmogorov type inequalities”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 93:3-4 (1983), 307