Abstract:
Existence theorems are proved for non-zero solutions of a multi-point Valle–Poussin boundary problem for differential equations with strong non-linearities. The proof is based on the construction of special cones in a Banach space, and on the application of a modification of a theorem on fixed points of operators which expand a cone.
Citation:
M. A. Krasnosel'skii, Yu. V. Pokornyi, “Non-zero solutions of equations with strong nonlinearities”, Mat. Zametki, 5:2 (1969), 253–260; Math. Notes, 5:2 (1969), 153–157
This publication is cited in the following 6 articles:
G. E. Abduragimov, “O suschestvovanii polozhitelnogo resheniya kraevoi zadachi dlya odnogo nelineinogo funktsionalno-differentsialnogo uravneniya vtorogo poryadka”, Materialy Mezhdunarodnoi konferentsii «Klassicheskaya i sovremennaya geometriya», posvyaschennoi 100-letiyu so dnya rozhdeniya professora Levona Sergeevicha Atanasyana (15 iyulya 1921 g.—5 iyulya 1998 g.). Moskva, 1–4 noyabrya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 221, VINITI RAN, M., 2023, 3–9
G. E. Abduragimov, “Existence and uniqueness of positive solution to a boundary value problem for a nonlinear second order functional-differential equation”, Russian Math. (Iz. VUZ), 64:12 (2020), 1–5
Yu. V. Pokornyi, “Zeros of the Green's function for the de la Vallée-Poussin problem”, Sb. Math., 199:6 (2008), 891–921
Jairo Santanilla, “Existence and nonexistence of positive radial solutions for some semilinear elliptic problems in annular domains”, Nonlinear Analysis: Theory, Methods & Applications, 16:10 (1991), 861
V. S. Klimov, “Nontrivial solutions of boundary value problems for semilinear elliptic equations”, Math. USSR-Izv., 5:2 (1971), 445–457
P. P. Zabreiko, M. A. Krasnosel'skii, Yu. V. Pokornyi, “On a class of linear positive operators”, Funct. Anal. Appl., 5:4 (1971), 272–279