Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1979, Volume 26, Issue 1, Pages 15–25 (Mi mzm6800)  

This article is cited in 33 scientific papers (total in 33 papers)

Description of a class of projection operators for semisimple complex Lie algebras

R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoy

Institute of Nuclear Physics, Moscow State University
Received: 11.10.1976
English version:
Mathematical Notes, 1979, Volume 26, Issue 1, Pages 499–504
DOI: https://doi.org/10.1007/BF01140268
Bibliographic databases:
UDC: 517
Language: Russian
Citation: R. M. Asherova, Yu. F. Smirnov, V. N. Tolstoy, “Description of a class of projection operators for semisimple complex Lie algebras”, Mat. Zametki, 26:1 (1979), 15–25; Math. Notes, 26:1 (1979), 499–504
Citation in format AMSBIB
\Bibitem{AshSmiTol79}
\by R.~M.~Asherova, Yu.~F.~Smirnov, V.~N.~Tolstoy
\paper Description of a~class of projection operators for semisimple complex Lie algebras
\jour Mat. Zametki
\yr 1979
\vol 26
\issue 1
\pages 15--25
\mathnet{http://mi.mathnet.ru/mzm6800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=553557}
\zmath{https://zbmath.org/?q=an:0414.17005}
\transl
\jour Math. Notes
\yr 1979
\vol 26
\issue 1
\pages 499--504
\crossref{https://doi.org/10.1007/BF01140268}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JP38000002}
Linking options:
  • https://www.mathnet.ru/eng/mzm6800
  • https://www.mathnet.ru/eng/mzm/v26/i1/p15
  • This publication is cited in the following 33 articles:
    1. A. V. Razumov, “On Poincaré–Birkhoff–Witt basis of the quantum general linear superalgebra”, Theoret. and Math. Phys., 217:3 (2023), 1938–1953  mathnet  crossref  crossref  mathscinet  adsnasa
    2. D. V. Artamonov, “Functional approach to a Gelfand–Tsetlin-type basis for $\mathfrak{o}_5$”, Theoret. and Math. Phys., 211:1 (2022), 443–459  mathnet  crossref  crossref  mathscinet  adsnasa
    3. Asmus K. Bisbo, Joris Van der Jeugt, “Bases for infinite dimensional simple osp(1|2n)-modules respecting the branching osp(1|2n)⊃gl(n)”, Journal of Mathematical Physics, 63:6 (2022)  crossref
    4. Alexander V. Razumov, “Quantum groups and functional relations for arbitrary rank”, Nuclear Physics B, 971 (2021), 115517  crossref
    5. ALEXANDER MOLEV, OKSANA YAKIMOVA, “MONOMIAL BASES AND BRANCHING RULES”, Transformation Groups, 26:3 (2021), 995  crossref
    6. Khazret S. Nirov, Alexander V. Razumov, “Vertex Models and Spin Chains in Formulas and Pictures”, SIGMA, 15 (2019), 068, 67 pp.  mathnet  crossref
    7. Khazret S. Nirov, Alexander V. Razumov, “Highest $\ell$-Weight Representations and Functional Relations”, SIGMA, 13 (2017), 043, 31 pp.  mathnet  crossref
    8. Charles H. Conley, Dimitar Grantcharov, “Quantization and injective submodules of differential operator modules”, Advances in Mathematics, 316 (2017), 216  crossref
    9. Khazret S Nirov, Alexander V Razumov, “Quantum groups, Verma modules andq-oscillators: general linear case”, J. Phys. A: Math. Theor., 50:30 (2017), 305201  crossref
    10. Hermann Boos, Frank Göhmann, Andreas Klümper, Khazret S. Nirov, Alexander V. Razumov, “Oscillator versus prefundamental representations. II. Arbitrary higher ranks”, Journal of Mathematical Physics, 58:9 (2017)  crossref
    11. Hermann Boos, Frank Göhmann, Andreas Klümper, Khazret S. Nirov, Alexander V. Razumov, “Oscillator versus prefundamental representations”, Journal of Mathematical Physics, 57:11 (2016)  crossref
    12. Kh S Nirov, A V Razumov, “Quantum affine algebras and universal functional relations”, J. Phys.: Conf. Ser., 670 (2016), 012037  crossref
    13. C. H. Conley, M. R. Sepanski, “Factorizations of relative extremal projectors”, P-Adic Num Ultrametr Anal Appl, 7:4 (2015), 276  crossref
    14. Sergey Khoroshkin, Maxim Nazarov, Alexander Shapiro, “Rational and polynomial representations of Yangians”, Journal of Algebra, 418 (2014), 265  crossref
    15. F. Delduc, M. Magro, B. Vicedo, “Derivation of the action and symmetries of the q-deformed AdS5 × S 5 superstring”, J. High Energ. Phys., 2014:10 (2014)  crossref
    16. A. Sevostyanov, “The geometric meaning of Zhelobenko operators”, Transformation Groups, 18:3 (2013), 865  crossref
    17. Sergei Khoroshkin, Oleg Ogievetsky, “Structure Constants of Diagonal Reduction Algebras of $\mathfrak{gl}$ Type”, SIGMA, 7 (2011), 064, 34 pp.  mathnet  crossref  mathscinet
    18. Herman Boos, Frank Göhmann, Andreas Klümper, Khazret S Nirov, Alexander V Razumov, “On the universal $\boldmath $R$$-matrix for the Izergin–Korepin model”, J. Phys. A: Math. Theor., 44:35 (2011), 355202  crossref
    19. Sergey Khoroshkin, Maxim Nazarov, Ernest Vinberg, “A generalized Harish-Chandra isomorphism”, Advances in Mathematics, 226:2 (2011), 1168  crossref
    20. O. V. Ogievetskii, S. M. Khoroshkin, “Diagonal Reduction Algebras of $\mathfrak{gl}$ Type”, Funct. Anal. Appl., 44:3 (2010), 182–198  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:328
    Full-text PDF :135
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025