Citation:
A. V. Loboda, “Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation”, Mat. Zametki, 73:3 (2003), 453–456; Math. Notes, 73:3 (2003), 419–423
\Bibitem{Lob03}
\by A.~V.~Loboda
\paper Determination of a Homogeneous Strictly Pseudoconvex Surface from the Coefficients of Its Normal Equation
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 3
\pages 453--456
\mathnet{http://mi.mathnet.ru/mzm616}
\crossref{https://doi.org/10.4213/mzm616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1992605}
\zmath{https://zbmath.org/?q=an:1060.32021}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 3
\pages 419--423
\crossref{https://doi.org/10.1023/A:1023278314518}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000182776700013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0345863535}
Linking options:
https://www.mathnet.ru/eng/mzm616
https://doi.org/10.4213/mzm616
https://www.mathnet.ru/eng/mzm/v73/i3/p453
This publication is cited in the following 24 articles:
Joël Merker, Paweł Nurowski, “Homogeneous CR and Para-CR Structures in Dimensions 5 and 3”, J Geom Anal, 34:1 (2024)
Nan J., Jian Zh., Ning Ch., Dai W., “A Lightweight Learning Method For Stochastic Configuration Networks Using Non-Inverse Solution”, Electronics, 11:2 (2022), 262
A. V. Atanov, A. V. Loboda, “Decomposable Five-Dimensional Lie Algebras in the Problem on Holomorphic Homogeneity in ℂ3”, J Math Sci, 268:1 (2022), 84
Doubrov B. Medvedev A. The D., “Homogeneous Levi Non-Degenerate Hypersurfaces in C-3”, Math. Z., 297:1-2 (2021), 669–709
Sabzevari M., “Convergent Normal Form For Five Dimensional Totally Nondegenerate Cr Manifolds in C-4”, J. Geom. Anal., 31:8 (2021), 7900–7946
Doubrov B. Merker J. The D., “Classification of Simply-Transitive Levi Non-Degenerate Hypersurfaces in C-3”, Int. Math. Res. Notices, 2021, rnab147
Doubrov B., Medvedev A., The D., “Homogeneous Integrable Legendrian Contact Structures in Dimension Five”, J. Geom. Anal., 30:4 (2020), 3806–3858
Medvedev A., Schmalz G., Ezhov V., “On the Classification of Homogeneous Affine Tube Domains With Large Automorphism Groups in Arbitrary Dimensions”, Adv. Math., 364 (2020), 107028
A. V. Loboda, “Holomorphically homogeneous real hypersurfaces in C3”, Trans. Moscow Math. Soc., 81:2 (2020), 169–228
R. S. Akopyan, A. V. Loboda, “O golomorfnykh realizatsiyakh nilpotentnykh algebr Li”, Funkts. analiz i ego pril., 53:2 (2019), 59–63
R. S. Akopyan, A. V. Loboda, “On holomorphic realizations of 5-dimensional Lie algebras”, St. Petersburg Math. J., 31:6 (2020), 911–937
A. V. Atanov, A. V. Loboda, “Razlozhimye pyatimernye algebry Li v zadache o golomorfnoi odnorodnosti v C3”, Materialy Voronezhskoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy». 28 yanvarya–2 fevralya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 173, VINITI RAN, M., 2019, 86–115
R. S. Akopyan, A. V. Loboda, “On Holomorphic Realizations of Nilpotent Lie Algebras”, Funct Anal Its Appl, 53:2 (2019), 124
A. V. Atanov, A. V. Loboda, V. I. Sukovykh, “On Holomorphic Homogeneity of Real Hypersurfaces of General Position in C3”, Proc. Steklov Inst. Math., 298 (2017), 13–34
A. V. Loboda, A. V. Shipovskaya, “Ob affinno-odnorodnykh veschestvennykh giperpoverkhnostyakh obschego polozheniya v C3”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:3 (2017), 111–135
A. V. Loboda, V. K. Evchenko, “Various representations of matrix Lie algebras related to homogeneous surfaces”, Russian Math. (Iz. VUZ), 57:4 (2013), 35–51
T. T. D. Nguen, “Affine-Homogeneous Real Hypersurfaces of Tube Type in C3”, Math. Notes, 94:2 (2013), 238–254
A. V. Loboda, “Affinely Homogeneous Real Hypersurfaces of C2”, Funct. Anal. Appl., 47:2 (2013), 113–126
Beloshapka V.K., Kossovskiy I.G., “Classification of homogeneous CR-manifolds in dimension 4”, J Math Anal Appl, 374:2 (2011), 655–672