Abstract:
We present a theory which allows us to justify the existence theorems and derive majorant estimates for solutions of the Cauchy problem for a countable system of partial differential equations. Our results also allow to estimate the maximum existence interval for a solution.
\Bibitem{Zub01}
\by O.~\`E.~Zubelevich
\paper On the Majorant Method for the Cauchy--Kovalevskaya Problem
\jour Mat. Zametki
\yr 2001
\vol 69
\issue 3
\pages 363--374
\mathnet{http://mi.mathnet.ru/mzm510}
\crossref{https://doi.org/10.4213/mzm510}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846835}
\zmath{https://zbmath.org/?q=an:0992.35004}
\elib{https://elibrary.ru/item.asp?id=14268641}
\transl
\jour Math. Notes
\yr 2001
\vol 69
\issue 3
\pages 329--339
\crossref{https://doi.org/10.1023/A:1010279307669}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000169324200006}
Linking options:
https://www.mathnet.ru/eng/mzm510
https://doi.org/10.4213/mzm510
https://www.mathnet.ru/eng/mzm/v69/i3/p363
This publication is cited in the following 7 articles:
D. V. Treschev, E. I. Kugushev, T. V. Popova, S. V. Bolotin, Yu. F. Golubev, V. A. Samsonov, Yu. D. Selyutskii, “Kafedra teoreticheskoi mekhaniki i mekhatroniki”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 103–113
D. V. Treschev, E. I. Kugushev, T. V. Shakhova, S. V. Bolotin, Yu. F. Golubev, V. A. Samsonov, Yu. D. Selyutskiy, “Chair of Theoretical Mechanics and Mechatronics”, Moscow Univ. Mech. Bull., 79:6 (2024), 200
Yu J., Zhang X., “Infinite Dimensional Cauchy-Kowalevski and Holmgren Type Theorems”, Sci. China-Math., 62:9 (2019), 1645–1656
O. Zubelevich, “Majorant Method for the Evolution Differential Equations
in Sequence Spaces”, Math. Notes, 103:4 (2018), 565–582
Zubelevich O., “Evolution Differential Equations in Frechet Space With Schauder Basis”, Funkc. Ekvacioj-Ser. Int., 60:2 (2017), 213–237