Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 4, Pages 507–522
DOI: https://doi.org/10.4213/mzm49
(Mi mzm49)
 

This article is cited in 43 scientific papers (total in 43 papers)

Universal Models For Real Submanifolds

V. K. Beloshapka

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In previous papers by the present author, a machinery for calculating automorphisms, constructing invariants, and classifying real submanifolds of a complex manifold was developed. The main step in this machinery is the construction of a “nice” model surface. The nice model surface can be treated as an analog of the osculating paraboloid in classical differential geometry. Model surfaces suggested earlier possess a complete list of the desired properties only if some upper estimate for the codimension of the submanifold is satisfied. If this estimate fails, then the surfaces lose the universality property (that is, the ability to touch any germ in an appropriate way), which restricts their applicability. In the present paper, we get rid of this restriction: for an arbitrary type (n,K)(n,K) (where nn is the dimension of the complex tangent plane, and KK is the real codimension), we construct a nice model surface. In particular, we solve the problem of constructing a nondegenerate germ of a real analytic submanifold of a complex manifold of arbitrary given type (n,K)(n,K) with the richest possible group of holomorphic automorphisms in the given class.
Received: 03.06.2003
Revised: 15.07.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 4, Pages 475–488
DOI: https://doi.org/10.1023/B:MATN.0000023331.50692.87
Bibliographic databases:
UDC: 514.742
Language: Russian
Citation: V. K. Beloshapka, “Universal Models For Real Submanifolds”, Mat. Zametki, 75:4 (2004), 507–522; Math. Notes, 75:4 (2004), 475–488
Citation in format AMSBIB
\Bibitem{Bel04}
\by V.~K.~Beloshapka
\paper Universal Models For Real Submanifolds
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 4
\pages 507--522
\mathnet{http://mi.mathnet.ru/mzm49}
\crossref{https://doi.org/10.4213/mzm49}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068283}
\zmath{https://zbmath.org/?q=an:1063.32010}
\elib{https://elibrary.ru/item.asp?id=13829394}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 4
\pages 475--488
\crossref{https://doi.org/10.1023/B:MATN.0000023331.50692.87}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000221289900023}
Linking options:
  • https://www.mathnet.ru/eng/mzm49
  • https://doi.org/10.4213/mzm49
  • https://www.mathnet.ru/eng/mzm/v75/i4/p507
  • This publication is cited in the following 43 articles:
    1. I. I. Zavolokin, “Odnorodnye CRCR-mnogoobraziya v C4”, Matem. zametki, 117:3 (2025), 388–401  mathnet  crossref
    2. Jan Gregorovič, Martin Kolář, David Sykes, “Models of 2-nondegenerate CR hypersurfaces in CN”, Math. Ann., 2025  crossref
    3. V. K. Beloshapka, “Model CR Surfaces: Weighted Approach”, Russ. J. Math. Phys., 30:1 (2023), 25  crossref
    4. M. A. Stepanova, “The Dimension Conjecture: Solution and Future Prospects”, Math. Notes, 112:5 (2022), 776–788  mathnet  crossref  crossref  mathscinet
    5. Sabzevari M., “Convergent Normal Form For Five Dimensional Totally Nondegenerate Cr Manifolds in C-4”, J. Geom. Anal., 31:8 (2021), 7900–7946  crossref  mathscinet  isi
    6. M. A. Stepanova, “Holomorphically homogeneous CR-manifolds and their model surfaces”, Izv. Math., 85:3 (2021), 529–535  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    7. Beloshapka V.K., “On the Group of Holomorphic Automorphisms of a Model Surface”, Russ. J. Math. Phys., 28:3 (2021), 275–283  crossref  mathscinet  isi  scopus
    8. M. A. Stepanova, “Ob avtomorfizmakh CR-podmnogoobrazii kompleksnogo gilbertova prostranstva”, Sib. elektron. matem. izv., 17 (2020), 126–140  mathnet  crossref
    9. Beloshapka V.K., “Cr-Manifolds of Finite Bloom-Graham Type: the Model Surface Method”, Russ. J. Math. Phys., 27:2 (2020), 155–174  crossref  mathscinet  isi  scopus
    10. Sabzevari M., “Totally Nondegenerate Models and Standard Manifolds in Cr Dimension One”, Bull. Iran Math. Soc., 46:4 (2020), 973–986  crossref  mathscinet  isi  scopus
    11. Sabzevari M., Spiro A., “On the Geometric Order of Totally Nondegenerate Cr Manifolds”, Math. Z., 296:1-2 (2020), 185–210  crossref  mathscinet  isi  scopus
    12. Beloshapka V.K., “Polynomial Model Cr-Manifolds With the Rigidity Condition”, Russ. J. Math. Phys., 26:1 (2019), 1–8  crossref  mathscinet  isi  scopus
    13. Sabzevari M., “Biholomorphic Equivalence to Totally Nondegenerate Model Cr Manifolds”, Ann. Mat. Pura Appl., 198:4 (2019), 1121–1163  crossref  mathscinet  isi  scopus
    14. Beloshapka V.K., “Cubic Model Cr-Manifolds Without the Assumption of Complete Nondegeneracy”, Russ. J. Math. Phys., 25:2 (2018), 148–157  crossref  mathscinet  isi  scopus  scopus
    15. M. A. Stepanova, “A modification of the Bloom–Graham Theorem: the introduction of weights in the complex tangent space”, Trans. Moscow Math. Soc., 2018, 201–208  mathnet  crossref  elib
    16. Sabzevari M., “On the Maximum Conjecture”, Forum Math., 30:6 (2018), 1599–1608  crossref  mathscinet  zmath  isi  scopus
    17. Kolar M., Kossovskiy I., Zaitsev D., “Normal Forms in Cauchy-Riemann Geometry”, Analysis and Geometry in Several Complex Variables, Contemporary Mathematics, 681, eds. Berhanu S., Mir N., Straube E., Amer Mathematical Soc, 2017, 153–177  crossref  mathscinet  zmath  isi  scopus  scopus
    18. Merker J., Sabzevari M., “Cartan Equivalence Problem for 5-Dimensional Bracket-Generating CR Manifolds in
      C4
      C 4”, J. Geom. Anal., 26:4 (2016), 3194–3251  crossref  mathscinet  zmath  isi  elib  scopus
    19. Sabzevari M., Hashemi A., Alizadeh B.M., Merker J., “Lie algebras of infinitesimal CR automorphisms of weighted homogeneous and homogeneous CR-generic submanifolds of CN”, Filomat, 30:6 (2016), 1387–1411  crossref  mathscinet  zmath  isi  elib  scopus
    20. Masoud S., “Moduli Spaces of Model Real Submanifolds: Two Alternative Approaches”, Sci. China-Math., 58:11 (2015), 2261–2278  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:1078
    Full-text PDF :338
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025