Abstract:A priori estimates of the solution to the Dirichlet problem and of its first derivatives in terms of weighted Lebesgue norms are obtained for linear and quasilinear equations with degeneracy from $A_p$ Muckenhoupt classes.
Citation:
R. A. Amanov, F. I. Mamedov, “Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form”, Mat. Zametki, 83:1 (2008), 3–13; Math. Notes, 83:1 (2008), 3–13
\Bibitem{AmaMam08}
\by R.~A.~Amanov, F.~I.~Mamedov
\paper Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/mzm4334}
\crossref{https://doi.org/10.4213/mzm4334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399992}
\zmath{https://zbmath.org/?q=an:1159.35028}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 1
\pages 3--13
\crossref{https://doi.org/10.1134/S000143460801001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849084904}
Linking options:
https://www.mathnet.ru/eng/mzm4334
https://doi.org/10.4213/mzm4334
https://www.mathnet.ru/eng/mzm/v83/i1/p3
This publication is cited in the following 10 articles:
Giuseppe Di Fazio, Farman Mamedov, “On Harnack inequality and Hölder continuity for non uniformly elliptic equations”, Ricerche mat, 2024
F. Mamedov, G. Gasymov, “Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity”, Math. Notes, 112:2 (2022), 251–270
Farman Mamedov, “On Harnack inequality and Hölder continuity to the degenerate parabolic equations”, Journal of Differential Equations, 340 (2022), 521
Farman Mamedov, Sara Monsurrò, “Sobolev inequality with non-uniformly degenerating gradient”, Electron. J. Qual. Theory Differ. Equ., 2022, no. 24, 1
Mamedov F., Mammadzade N., Persson L.-E., “A New Fractional Order Poincare'S Inequality With Weights”, Math. Inequal. Appl., 23:2 (2020), 611–624
Mamedov F., Mammadli S., Shukurov Ya., “On Compact and Bounded Embedding in Variable Exponent Sobolev Spaces and Its Applications”, Arabian J. Math., 9:2 (2020), 401–414
Mamedov F., Shukurov Ya., “A Sawyer-Type Sufficient Condition For the Weighted Poincaré, Inequality”, Positivity, 22:3 (2018), 687–699
Maria Transirico, Sara Monsurrò, Farman Mamedov, Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain), 2015, 793
Mamedov F.I., Ibragimov T.T., “On the behavior of solutions of some nonlinear degenerate elliptic inequalities”, Differ. Equ., 46:5 (2010), 711–721