Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2008, Volume 83, Issue 1, Pages 3–13
DOI: https://doi.org/10.4213/mzm4334
(Mi mzm4334)
 

This article is cited in 10 scientific papers (total in 10 papers)

Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form

R. A. Amanova, F. I. Mamedovb

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Dicle University
References:
Abstract: A priori estimates of the solution to the Dirichlet problem and of its first derivatives in terms of weighted Lebesgue norms are obtained for linear and quasilinear equations with degeneracy from $A_p$ Muckenhoupt classes.
Keywords: elliptic equation of divergence form, Dirichlet problem, Lipschitz condition, Lebesgue norm, Lebesgue measure, Hölder's inequality.
Received: 14.07.2006
English version:
Mathematical Notes, 2008, Volume 83, Issue 1, Pages 3–13
DOI: https://doi.org/10.1134/S000143460801001X
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: R. A. Amanov, F. I. Mamedov, “Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form”, Mat. Zametki, 83:1 (2008), 3–13; Math. Notes, 83:1 (2008), 3–13
Citation in format AMSBIB
\Bibitem{AmaMam08}
\by R.~A.~Amanov, F.~I.~Mamedov
\paper Regularity of the Solutions of Degenerate Elliptic Equations in Divergent Form
\jour Mat. Zametki
\yr 2008
\vol 83
\issue 1
\pages 3--13
\mathnet{http://mi.mathnet.ru/mzm4334}
\crossref{https://doi.org/10.4213/mzm4334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2399992}
\zmath{https://zbmath.org/?q=an:1159.35028}
\transl
\jour Math. Notes
\yr 2008
\vol 83
\issue 1
\pages 3--13
\crossref{https://doi.org/10.1134/S000143460801001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254056300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48849084904}
Linking options:
  • https://www.mathnet.ru/eng/mzm4334
  • https://doi.org/10.4213/mzm4334
  • https://www.mathnet.ru/eng/mzm/v83/i1/p3
  • This publication is cited in the following 10 articles:
    1. Giuseppe Di Fazio, Farman Mamedov, “On Harnack inequality and Hölder continuity for non uniformly elliptic equations”, Ricerche mat, 2024  crossref
    2. F. Mamedov, G. Gasymov, “Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity”, Math. Notes, 112:2 (2022), 251–270  mathnet  crossref  crossref
    3. Farman Mamedov, “On Harnack inequality and Hölder continuity to the degenerate parabolic equations”, Journal of Differential Equations, 340 (2022), 521  crossref
    4. Farman Mamedov, Sara Monsurrò, “Sobolev inequality with non-uniformly degenerating gradient”, Electron. J. Qual. Theory Differ. Equ., 2022, no. 24, 1  crossref
    5. Mamedov F., “A Poincare'S Inequality With Non-Uniformly Degenerating Gradient”, Mon.heft. Math., 194:1 (2021), 151–165  crossref  mathscinet  isi  scopus
    6. Mamedov F., Mammadzade N., Persson L.-E., “A New Fractional Order Poincare'S Inequality With Weights”, Math. Inequal. Appl., 23:2 (2020), 611–624  crossref  mathscinet  isi
    7. Mamedov F., Mammadli S., Shukurov Ya., “On Compact and Bounded Embedding in Variable Exponent Sobolev Spaces and Its Applications”, Arabian J. Math., 9:2 (2020), 401–414  crossref  mathscinet  isi
    8. Mamedov F., Shukurov Ya., “A Sawyer-Type Sufficient Condition For the Weighted Poincaré, Inequality”, Positivity, 22:3 (2018), 687–699  crossref  mathscinet  isi  scopus
    9. Maria Transirico, Sara Monsurrò, Farman Mamedov, Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain), 2015, 793  crossref
    10. Mamedov F.I., Ibragimov T.T., “On the behavior of solutions of some nonlinear degenerate elliptic inequalities”, Differ. Equ., 46:5 (2010), 711–721  crossref  mathscinet  zmath  isi  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:672
    Full-text PDF :285
    References:91
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025