Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 4, Pages 569–584
DOI: https://doi.org/10.4213/mzm4162
(Mi mzm4162)
 

This article is cited in 14 scientific papers (total in 14 papers)

Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts

O. L. Vinogradov

Saint-Petersburg State University
References:
Abstract: Sharp Akhiezer–Krein–Favard-type inequalities for classes of periodic convolutions with kernels that do not increase oscillation are obtained. A large class of approximating odd-dimensional subspaces constructed from uniform shifts of one function with extremal widths is specified. As a corollary, sharp Jackson-type inequalities for the second-order modulus of continuity are derived.
Keywords: Akhiezer–Krein–Favard inequality, periodic convolution, Jackson inequality, second-order modulus of continuity, the space Lp, Sobolev class, spline.
Received: 05.05.2005
Revised: 15.05.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 4, Pages 544–557
DOI: https://doi.org/10.1134/S0001434609030250
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts”, Mat. Zametki, 85:4 (2009), 569–584; Math. Notes, 85:4 (2009), 544–557
Citation in format AMSBIB
\Bibitem{Vin09}
\by O.~L.~Vinogradov
\paper Sharp Inequalities for Approximations of Classes of Periodic Convolutions by Odd-Dimensional Subspaces of Shifts
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 569--584
\mathnet{http://mi.mathnet.ru/mzm4162}
\crossref{https://doi.org/10.4213/mzm4162}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2549418}
\zmath{https://zbmath.org/?q=an:05628183}
\elib{https://elibrary.ru/item.asp?id=15302293}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 544--557
\crossref{https://doi.org/10.1134/S0001434609030250}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949148012}
Linking options:
  • https://www.mathnet.ru/eng/mzm4162
  • https://doi.org/10.4213/mzm4162
  • https://www.mathnet.ru/eng/mzm/v85/i4/p569
  • This publication is cited in the following 14 articles:
    1. A. Yu. Ulitskaya, “Sharp estimates for the mean-square approximations of convolution classes by shift spaces on the axis”, Siberian Math. J., 64:1 (2023), 157–173  mathnet  crossref  crossref  mathscinet
    2. A. Yu. Ulitskaya, “FOURIER ANALYSIS IN SPACES OF SHIFTS”, J Math Sci, 266:4 (2022), 603  crossref
    3. O. L. Vinogradov, “Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts”, St. Petersburg Math. J., 32:2 (2021), 233–260  mathnet  crossref  isi  elib
    4. A. Yu. Ulitskaya, “Sharp estimates for mean square approximations of classes of periodic convolutions by spaces of shifts”, St. Petersburg Math. J., 32:2 (2021), 349–369  mathnet  crossref  isi  elib
    5. Vinogradov O.L., Ulitskaya A.Yu., “Optimal Subspaces For Mean Square Approximation of Classes of Differentiable Functions on a Segment”, Vestn. St Petersb. Univ.-Math., 53:3 (2020), 270–281  crossref  mathscinet  isi  scopus
    6. Vinogradov O.L. Ulitskaya A.Yu., “Sharp Estimates For Mean Square Approximations of Classes of Differentiable Periodic Functions By Shift Spaces”, Vestnik St. Petersburg Univ. Math., 51:1 (2018), 15–22  crossref  mathscinet  isi  scopus
    7. O. L. Vinogradov, “Sharp constants for approximations of convolution classes with an integrable kernel by spaces of shifts”, St. Petersburg Math. J., 30:5 (2019), 841–867  mathnet  crossref  mathscinet  isi  elib
    8. Gladkaya A.V. Vinogradov O.L., “Sharp Jackson type inequalities for spline approximation on the axis”, Anal. Math., 43:1 (2017), 27–47  crossref  mathscinet  zmath  isi  scopus
    9. O. L. Vinogradov, “Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions”, Siberian Math. J., 58:2 (2017), 190–204  mathnet  crossref  crossref  isi  elib  elib
    10. Norifumi Shioda, “RNA toxicity and RAN translation in repeat expansion disorders”, Folia Pharmacologica Japonica, 150:3 (2017), 165  crossref
    11. Gocheva-Ilieva S.G. Feschiev I.H., “New Recursive Representations for the Favard Constants with Application to Multiple Singular Integrals and Summation of Series”, Abstract Appl. Anal., 2013, 523618  crossref  mathscinet  zmath  isi  elib  scopus
    12. O. L. Vinogradov, V. V. Zhuk, “Estimates of functionals by the second moduli of continuity of even derivatives”, J. Math. Sci. (N. Y.), 202:4 (2014), 526–540  mathnet  crossref
    13. O. L. Vinogradov, V. V. Zhuk, “Estimates for functional with a known finite set of moments in terms of moduli of continuity and behaviour of constants in the Jackson-type inequalities”, St. Petersburg Math. J., 24:5 (2013), 691–721  mathnet  crossref  mathscinet  zmath  isi  elib
    14. O. L. Vinogradov, V. V. Zhuk, “Estimates for functionals with a known finite set of moments in terms of deviations of operators constructed with the use of the Steklov averages and finite differences”, J. Math. Sci. (N. Y.), 184:6 (2012), 679–698  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:654
    Full-text PDF :249
    References:104
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025