Abstract:
In this paper, we consider questions related to the structure of inverse matrices of linear bounded operators acting in infinite-dimensional complex Banach spaces. We obtain specific estimates of elements of inverse matrices for bounded operators whose matrices have a special structure. Matrices are introduced as special operator-valued functions on an index set. The matrix structure is described by the behavior of the given function on elements of a special partition of the index set. The method used for deriving the estimates is based on an analysis of Fourier series of strongly continuous periodic functions.
Citation:
T. V. Azarnova, “Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure”, Mat. Zametki, 72:1 (2002), 3–10; Math. Notes, 72:1 (2002), 3–9
\Bibitem{Aza02}
\by T.~V.~Azarnova
\paper Estimates for Elements of Inverse Matrices for a Class of Operators with Matrices of Special Structure
\jour Mat. Zametki
\yr 2002
\vol 72
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/mzm399}
\crossref{https://doi.org/10.4213/mzm399}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942577}
\zmath{https://zbmath.org/?q=an:1045.47010}
\transl
\jour Math. Notes
\yr 2002
\vol 72
\issue 1
\pages 3--9
\crossref{https://doi.org/10.1023/A:1019826518567}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178299100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0141513951}
Linking options:
https://www.mathnet.ru/eng/mzm399
https://doi.org/10.4213/mzm399
https://www.mathnet.ru/eng/mzm/v72/i1/p3
This publication is cited in the following 4 articles:
Krishtal I.A., “Wiener's Lemma: Pictures at an Exhibition”, Rev. Union Mat. Argent., 52:2 (2011), 61–79
Balan R., Krishtal I., “An Almost Periodic Noncommutative Wiener's Lemma”, J. Math. Anal. Appl., 370:2 (2010), 339–349
Dietmar Theis, The Optics Encyclopedia, 2007
Dietmar Theis, digital Encyclopedia of Applied Physics, 2004