Abstract:
In this paper, we prove an existence theorem for the element of best nonsymmetric approximation in spaces with nonsymmetric quasinorm. Examples showing the importance of the conditions embodied in the theorem are presented. A criterion for determining the element of best nonsymmetric approximation is given.
Citation:
B. V. Simonov, “On the Element of Best Nonsymmetric Approximation in Spaces with Nonsymmetric Quasinorm”, Mat. Zametki, 74:6 (2003), 902–912; Math. Notes, 74:6 (2003), 853–863
\Bibitem{Sim03}
\by B.~V.~Simonov
\paper On the Element of Best Nonsymmetric Approximation in Spaces with Nonsymmetric Quasinorm
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 6
\pages 902--912
\mathnet{http://mi.mathnet.ru/mzm318}
\crossref{https://doi.org/10.4213/mzm318}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2054009}
\zmath{https://zbmath.org/?q=an:1107.41020}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 6
\pages 853--863
\crossref{https://doi.org/10.1023/B:MATN.0000009022.34482.3e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187966900030}
Linking options:
https://www.mathnet.ru/eng/mzm318
https://doi.org/10.4213/mzm318
https://www.mathnet.ru/eng/mzm/v74/i6/p902
This publication is cited in the following 2 articles:
Ştefan Cobzaş, Costică Mustăţa, “Best approximation in spaces with asymmetric norm”, J. Numer. Anal. Approx. Theory, 35:1 (2006), 17
Ş. Cobzaş, C. Mustăţa, “Extension of bounded linear functionals and best approximation in spaces with asymmetric norm”, J. Numer. Anal. Approx. Theory, 33:1 (2004), 39