Abstract:
We consider the first initial-boundary value problem for multidimensional strongly nonlinear equations with double nonlinearity of pseudoparabolic type in a bounded domain with sufficiently smooth boundary. We prove the local solvability of this problem in the weak generalized sense. Depending on the nonlinearity and initial conditions under consideration, we prove the solvability of the equation in any finite cylinder (x,t)∈Ω×[0,T] or the destruction of the solution in finite time.
Citation:
M. O. Korpusov, A. G. Sveshnikov, ““Destruction” of the solution of a strongly nonlinear equation of pseudoparabolic type with double nonlinearity”, Mat. Zametki, 79:6 (2006), 879–899; Math. Notes, 79:6 (2006), 820–840
\Bibitem{KorSve06}
\by M.~O.~Korpusov, A.~G.~Sveshnikov
\paper ``Destruction'' of the solution of a~strongly nonlinear equation of pseudoparabolic type with double nonlinearity
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 6
\pages 879--899
\mathnet{http://mi.mathnet.ru/mzm2761}
\crossref{https://doi.org/10.4213/mzm2761}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2261242}
\zmath{https://zbmath.org/?q=an:1145.35410}
\elib{https://elibrary.ru/item.asp?id=9293145}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 6
\pages 820--840
\crossref{https://doi.org/10.1007/s11006-006-0093-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238504700026}
\elib{https://elibrary.ru/item.asp?id=14555713}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747862923}
Linking options:
https://www.mathnet.ru/eng/mzm2761
https://doi.org/10.4213/mzm2761
https://www.mathnet.ru/eng/mzm/v79/i6/p879
This publication is cited in the following 4 articles:
Quach Van Chuong, Le Cong Nhan, Le Xuan Truong, “Blow-up and Decay for a Pseudo-parabolic Equation with Nonstandard Growth Conditions”, Taiwanese J. Math., -1:-1 (2024)
Li Y. Cao Ya. Yin J., “A Class of Viscous P-Laplace Equation with Nonlinear Sources”, Chaos Solitons Fractals, 57 (2013), 24–34
N. A. Manakova, E. A. Bogonos, “Optimalnoe upravlenie resheniyami zadachi Shouoltera–Sidorova dlya odnogo uravneniya sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 3:1 (2010), 42–53