Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 3, Pages 434–443
DOI: https://doi.org/10.4213/mzm2712
(Mi mzm2712)
 

This article is cited in 12 scientific papers (total in 12 papers)

A description of harmonic functions via properties of the group representation of the Cayley tree

É. P. Normatova, U. A. Rozikovb

a National University of Uzbekistan named after M. Ulugbek
b Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
References:
Abstract: We introduce a natural generalization of the notion of harmonic functions on a Cayley tree and use some properties of the group representation of the Cayley tree to describe the set of harmonic functions periodic with respect to normal subgroups of finite index.
Received: 11.11.2004
English version:
Mathematical Notes, 2006, Volume 79, Issue 3, Pages 399–407
DOI: https://doi.org/10.1007/s11006-006-0044-4
Bibliographic databases:
UDC: 512.544.23+517.98+519.21
Language: Russian
Citation: É. P. Normatov, U. A. Rozikov, “A description of harmonic functions via properties of the group representation of the Cayley tree”, Mat. Zametki, 79:3 (2006), 434–443; Math. Notes, 79:3 (2006), 399–407
Citation in format AMSBIB
\Bibitem{NorRoz06}
\by \'E.~P.~Normatov, U.~A.~Rozikov
\paper A~description of harmonic functions via properties of the group representation of the Cayley tree
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 3
\pages 434--443
\mathnet{http://mi.mathnet.ru/mzm2712}
\crossref{https://doi.org/10.4213/mzm2712}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2251366}
\zmath{https://zbmath.org/?q=an:1187.43005}
\elib{https://elibrary.ru/item.asp?id=9192931}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 3
\pages 399--407
\crossref{https://doi.org/10.1007/s11006-006-0044-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645983659}
Linking options:
  • https://www.mathnet.ru/eng/mzm2712
  • https://doi.org/10.4213/mzm2712
  • https://www.mathnet.ru/eng/mzm/v79/i3/p434
  • This publication is cited in the following 12 articles:
    1. F. H. Haydarov, “On normal subgroups of the group representation of the Cayley tree”, Vladikavk. matem. zhurn., 25:4 (2023), 135–142  mathnet  crossref
    2. Farhod Haydarov, Utkir Rozikov, “Invariance Property on Group Representations of the Cayley Tree and Its Applications”, Results Math, 77:6 (2022)  crossref
    3. Rozikov U.A., “Gibbs Measures of Potts Model on Cayley Trees: a Survey and Applications”, Rev. Math. Phys., 33:10 (2021), 2130007  crossref  mathscinet  isi
    4. M. M. Rakhmatullaev, Zh. D. Dekhkonov, “Suschestvovanie slabo periodicheskikh mer Gibbsa dlya modeli Izinga na dereve Keli poryadka tri”, Vladikavk. matem. zhurn., 23:4 (2021), 77–88  mathnet  crossref
    5. Ban J.-Ch., Chang Ch.-H., Huang N.-Zh., “Entropy Bifurcation of Neural Networks on Cayley Trees”, Int. J. Bifurcation Chaos, 30:1 (2020), 2050015  crossref  mathscinet  isi
    6. Rakhmatullaev M.M., “On Weakly Periodic Gibbs Measures for the Potts Model with External Field on the Cayley Tree”, Ukr. Math. J., 68:4 (2016), 598–611  crossref  mathscinet  isi  scopus
    7. M. M. Rakhmatullaev, “Weakly periodic Gibbs measures of the Ising model with an external field on the Cayley tree”, Theoret. and Math. Phys., 183:3 (2015), 822–828  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Tuncer A., Erzan A., “Spectral Renormalization Group For the Gaussian Model and Psi(4) Theory on Nonspatial Networks”, Phys. Rev. E, 92:2 (2015), 022106  crossref  mathscinet  isi  scopus
    9. Rozikov U.A., “Gibbs Measures on Cayley Trees: Results and Open Problems”, Rev. Math. Phys., 25:1 (2013), 1330001  crossref  mathscinet  isi  elib  scopus
    10. U. A. Rozikov, F. T. Ishankulov, “Description of $p$-harmonic functions on the Cayley tree”, Theoret. and Math. Phys., 162:2 (2010), 222–229  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. Rozikov U.A., Ishankulov F.T., “Description of periodic $p$-harmonic functions on Cayley tree”, NoDEA Nonlinear Differential Equations Appl., 17:2 (2010), 153–160  crossref  mathscinet  zmath  isi  scopus
    12. U. A. Rozikov, M. M. Rakhmatullaev, “Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree”, Theoret. and Math. Phys., 156:2 (2008), 1218–1227  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :213
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025