Abstract:
Let D⊂Cn be a domain with smooth boundary ∂D, let E⊂∂D be a subset of positive Lebesgue measure mes(E)>0, and let F⊂G be a nonpluripolar compact set in a strongly pseudoconvex domain G⊂Cm. We prove that, under an additional condition, each function separately analytic on the set X=(D×F)∪(E×G) has a holomorphic contination to the domain ˆX={(z,w)∈D×G:ω∗in(z,E,D)+ω∗(w,F,G)<1}, where ω∗ is the P-measure and ω∗in is the interior P-measure.
Citation:
A. S. Sadullaev, S. A. Imomkulov, “Continuation of separately analytic functions defined on part of the domain boundary”, Mat. Zametki, 79:2 (2006), 234–243; Math. Notes, 79:2 (2006), 215–223
\Bibitem{SadImo06}
\by A.~S.~Sadullaev, S.~A.~Imomkulov
\paper Continuation of separately analytic functions defined on part of the domain boundary
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 2
\pages 234--243
\mathnet{http://mi.mathnet.ru/mzm2692}
\crossref{https://doi.org/10.4213/mzm2692}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2249112}
\zmath{https://zbmath.org/?q=an:1133.32003}
\elib{https://elibrary.ru/item.asp?id=9218880}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 2
\pages 215--223
\crossref{https://doi.org/10.1007/s11006-006-0024-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235913800024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31844447197}
Linking options:
https://www.mathnet.ru/eng/mzm2692
https://doi.org/10.4213/mzm2692
https://www.mathnet.ru/eng/mzm/v79/i2/p234
This publication is cited in the following 2 articles:
A. Sadullaev, “Prodolzhenie analiticheskikh i plyurigarmonicheskikh funktsii po zadannomu napravleniyu metodom E. M. Chirki (obzor)”, Sovremennye problemy matematiki i fiziki, SMFN, 65, no. 1, Rossiiskii universitet druzhby narodov, M., 2019, 83–94
A. A. Atamuratov, “On Meromorphic Continuation in a Fixed Direction”, Math. Notes, 86:3 (2009), 301–305