Abstract:
In this paper, we prove a multiple analog of the theorem proved by Arkhipov and the author in 1987, which provides an estimate for the discrete Hilbert transform with polynomial phase. For the linear case, the corresponding estimates of the sum of multiple trigonometric series was proved by Telyakovskii.
Citation:
K. I. Oskolkov, “On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases”, Mat. Zametki, 74:2 (2003), 242–256; Math. Notes, 74:2 (2003), 232–244
\Bibitem{Osk03}
\by K.~I.~Oskolkov
\paper On a Result of Telyakovskii and Multiple Hilbert Transforms with Polynomial Phases
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 2
\pages 242--256
\mathnet{http://mi.mathnet.ru/mzm261}
\crossref{https://doi.org/10.4213/mzm261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2023767}
\zmath{https://zbmath.org/?q=an:1064.44003}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 2
\pages 232--244
\crossref{https://doi.org/10.1023/A:1025008308955}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185172900028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642421081}
Linking options:
https://www.mathnet.ru/eng/mzm261
https://doi.org/10.4213/mzm261
https://www.mathnet.ru/eng/mzm/v74/i2/p242
This publication is cited in the following 2 articles:
Dmitriy Bilyk, Laura De Carli, Alexander Petukhov, Alexander M. Stokolos, Brett D. Wick, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 3
K. I. Oskolkov, “The Series ∑∑e2πimnxmn and a Problem of Chowla”, Proc. Steklov Inst. Math., 248 (2005), 197–215