Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 4, Pages 504–520
DOI: https://doi.org/10.4213/mzm1746
(Mi mzm1746)
 

This article is cited in 7 scientific papers (total in 7 papers)

Homogenization of the Stokes equations with a random potential

A. Yu. Belyaeva, Ya. R. Èfendievb

a Water Problems Institute of the Russian Academy of Sciences
b M. V. Lomonosov Moscow State University
Full-text PDF (243 kB) Citations (7)
References:
Abstract: Homogenization of the Stokes equations in a random porous medium is considered. Instead of the homogeneous Dirichlet condition on the boundaries of numerous small pores, used in the existing work on the subject, we insert a term with a positive rapidly oscillating potential into the equations. Physically, this corresponds to porous media whose rigid matrix is slightly permeable to fluid. This relaxation of the boundary value problem permits one to study the asymptotics of the solutions and to justify the Darcy law for the limit functions under much fewer restrictions. Specifically, homogenization becomes possible without any connectedness conditions for the porous domain, whose verification would lead to problems of percolation theory that are insufficiently studied.
Received: 10.06.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 4, Pages 361–372
DOI: https://doi.org/10.1007/BF02308685
Bibliographic databases:
UDC: 519.2+517.98
Language: Russian
Citation: A. Yu. Belyaev, Ya. R. Èfendiev, “Homogenization of the Stokes equations with a random potential”, Mat. Zametki, 59:4 (1996), 504–520; Math. Notes, 59:4 (1996), 361–372
Citation in format AMSBIB
\Bibitem{BelEfe96}
\by A.~Yu.~Belyaev, Ya.~R.~\`Efendiev
\paper Homogenization of the Stokes equations with a~random potential
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 4
\pages 504--520
\mathnet{http://mi.mathnet.ru/mzm1746}
\crossref{https://doi.org/10.4213/mzm1746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1445195}
\zmath{https://zbmath.org/?q=an:0877.35097}
\elib{https://elibrary.ru/item.asp?id=13221950}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 4
\pages 361--372
\crossref{https://doi.org/10.1007/BF02308685}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VD93600026}
Linking options:
  • https://www.mathnet.ru/eng/mzm1746
  • https://doi.org/10.4213/mzm1746
  • https://www.mathnet.ru/eng/mzm/v59/i4/p504
  • This publication is cited in the following 7 articles:
    1. Muntean A., Van Noorden T.L., “Corrector Estimates for the Homogenization of a Locally Periodic Medium with Areas of Low and High Diffusivity”, Eur. J. Appl. Math., 24:5 (2013), 657–677  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    2. Chechkin G.A., Chechkina T.P., D'Apice C., De Maio U., Mel'nyk T.A., “Homogenization of 3D thick cascade junction with a random transmission zone periodic in one direction”, Russian Journal of Mathematical Physics, 17:1 (2010), 35–55  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Chechkin, GA, “HOMOGENIZATION IN DOMAINS RANDOMLY PERFORATED ALONG THE BOUNDARY”, Discrete and Continuous Dynamical Systems-Series B, 12:4 (2009), 713  crossref  mathscinet  zmath  isi  scopus  scopus
    4. F. Campillo, A. Piatnitski, Studies in Mathematics and Its Applications, 31, Nonlinear Partial Differential Equations and their Applications - Collège de France Seminar Volume XIV, 2002, 133  crossref
    5. Pastukhova, SE, “Homogenization of the stationary Stokes system in a perforated domain with a mixed condition on the boundary of cavities”, Differential Equations, 36:5 (2000), 755  mathnet  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Beliaev, A, “The homogenization of Stokes flows in random porous domains of general type”, Asymptotic Analysis, 19:2 (1999), 81  mathscinet  zmath  isi
    7. S. E. Pastukhova, “Substantiation of the Darcy law for a porous medium with condition of partial adhesion”, Sb. Math., 189:12 (1998), 1871–1888  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :221
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025