Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1996, Volume 59, Issue 1, Pages 95–102
DOI: https://doi.org/10.4213/mzm1697
(Mi mzm1697)
 

This article is cited in 12 scientific papers (total in 12 papers)

Algorithms for approximate calculation of the minimum of a convex function from its values

V. Yu. Protasov

M. V. Lomonosov Moscow State University
References:
Abstract: The paper deals with a numerical minimization problem for a convex function defined on a convex n-dimensional domain and continuous (but not necessarily smooth). The values of the function can be calculated at any given point. It is required to find the minimum with desired accuracy. A new algorithm for solving this problem is presented, whose computational complexity as n is considerably less than that of similar algorithms known to the author. In fact, the complexity is improved from Cn7ln2(n+1) [4] to Cn2ln(n+1).
Received: 18.04.1994
English version:
Mathematical Notes, 1996, Volume 59, Issue 1, Pages 69–74
DOI: https://doi.org/10.1007/BF02312467
Bibliographic databases:
UDC: 517
Language: Russian
Citation: V. Yu. Protasov, “Algorithms for approximate calculation of the minimum of a convex function from its values”, Mat. Zametki, 59:1 (1996), 95–102; Math. Notes, 59:1 (1996), 69–74
Citation in format AMSBIB
\Bibitem{Pro96}
\by V.~Yu.~Protasov
\paper Algorithms for approximate calculation of the minimum of a~convex function from its values
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 1
\pages 95--102
\mathnet{http://mi.mathnet.ru/mzm1697}
\crossref{https://doi.org/10.4213/mzm1697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391825}
\zmath{https://zbmath.org/?q=an:0870.90088}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 1
\pages 69--74
\crossref{https://doi.org/10.1007/BF02312467}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900009}
Linking options:
  • https://www.mathnet.ru/eng/mzm1697
  • https://doi.org/10.4213/mzm1697
  • https://www.mathnet.ru/eng/mzm/v59/i1/p95
  • This publication is cited in the following 12 articles:
    1. Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro, “Information complexity of mixed-integer convex optimization”, Math. Program., 2024  crossref
    2. Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksandr Beznosikov, Alexander Lobanov, Encyclopedia of Optimization, 2024, 1  crossref
    3. Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro, Lecture Notes in Computer Science, 13904, Integer Programming and Combinatorial Optimization, 2023, 1  crossref
    4. Eduard Gorbunov, Pavel Dvurechensky, Alexander Gasnikov, “An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization”, SIAM J. Optim., 32:2 (2022), 1210  crossref
    5. Bubeck S., Eldan R., Lee Y.T., “Kernel-Based Methods For Bandit Convex Optimization”, J. ACM, 68:4 (2021), 25  crossref  isi
    6. Jiang H., Lee Y.T., Song Zh., Wong S.Ch.-w., “An Improved Cutting Plane Method For Convex Optimization, Convex -Concave Games, and Its Applications”, Proceedings of the 52Nd Annual Acm Sigact Symposium on Theory of Computing (Stoc `20), Annual Acm Symposium on Theory of Computing, eds. Makarychev K., Makarychev Y., Tulsiani M., Kamath G., Chuzhoy J., Assoc Computing Machinery, 2020, 944–953  crossref  isi
    7. Yin Tat Lee, Aaron Sidford, Santosh S. Vempala, Bolyai Society Mathematical Studies, 28, Building Bridges II, 2019, 317  crossref
    8. A. V. Gasnikov, D. A. Kovalev, “Gipoteza ob optimalnykh otsenkakh skorosti skhodimosti chislennykh metodov vypukloi optimizatsii vysokikh poryadkov”, Kompyuternye issledovaniya i modelirovanie, 10:3 (2018), 305–314  mathnet  crossref
    9. A. V. Gasnikov, E. A. Gorbunov, D. A. Kovalev, A. A. M. Mokhammed, E. O. Chernousova, “Obosnovanie gipotezy ob optimalnykh otsenkakh skorosti skhodimosti chislennykh metodov vypukloi optimizatsii vysokikh poryadkov”, Kompyuternye issledovaniya i modelirovanie, 10:6 (2018), 737–753  mathnet  crossref
    10. Nesterov Yu., Spokoiny V., “Random Gradient-Free Minimization of Convex Functions”, Found. Comput. Math., 17:2 (2017), 527–566  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Bubeck S., Lee Y.T., Eldan R., “Kernel-Based Methods For Bandit Convex Optimization”, Stoc'17: Proceedings of the 49Th Annual Acm Sigact Symposium on Theory of Computing, Annual Acm Symposium on Theory of Computing, eds. Hatami H., McKenzie P., King V., Assoc Computing Machinery, 2017, 72–85  crossref  mathscinet  zmath  isi  scopus
    12. E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:677
    Full-text PDF :319
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025