Abstract:
The paper deals with a numerical minimization problem for a convex function defined on a convex n-dimensional domain and continuous (but not necessarily smooth). The values of the function can be calculated at any given point. It is required to find the minimum with desired accuracy. A new algorithm for solving this problem is presented, whose computational complexity as n→∞ is considerably less than that of similar algorithms known to the author. In fact, the complexity is improved from Cn7ln2(n+1) [4] to Cn2ln(n+1).
Citation:
V. Yu. Protasov, “Algorithms for approximate calculation of the minimum of a convex function from its values”, Mat. Zametki, 59:1 (1996), 95–102; Math. Notes, 59:1 (1996), 69–74
\Bibitem{Pro96}
\by V.~Yu.~Protasov
\paper Algorithms for approximate calculation of the minimum of a~convex function from its values
\jour Mat. Zametki
\yr 1996
\vol 59
\issue 1
\pages 95--102
\mathnet{http://mi.mathnet.ru/mzm1697}
\crossref{https://doi.org/10.4213/mzm1697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391825}
\zmath{https://zbmath.org/?q=an:0870.90088}
\transl
\jour Math. Notes
\yr 1996
\vol 59
\issue 1
\pages 69--74
\crossref{https://doi.org/10.1007/BF02312467}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UP82900009}
Linking options:
https://www.mathnet.ru/eng/mzm1697
https://doi.org/10.4213/mzm1697
https://www.mathnet.ru/eng/mzm/v59/i1/p95
This publication is cited in the following 12 articles:
Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro, “Information complexity of mixed-integer convex optimization”, Math. Program., 2024
Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksandr Beznosikov, Alexander Lobanov, Encyclopedia of Optimization, 2024, 1
Amitabh Basu, Hongyi Jiang, Phillip Kerger, Marco Molinaro, Lecture Notes in Computer Science, 13904, Integer Programming and Combinatorial Optimization, 2023, 1
Eduard Gorbunov, Pavel Dvurechensky, Alexander Gasnikov, “An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization”, SIAM J. Optim., 32:2 (2022), 1210
Bubeck S., Eldan R., Lee Y.T., “Kernel-Based Methods For Bandit Convex Optimization”, J. ACM, 68:4 (2021), 25
Jiang H., Lee Y.T., Song Zh., Wong S.Ch.-w., “An Improved Cutting Plane Method For Convex Optimization, Convex -Concave Games, and Its Applications”, Proceedings of the 52Nd Annual Acm Sigact Symposium on Theory of Computing (Stoc `20), Annual Acm Symposium on Theory of Computing, eds. Makarychev K., Makarychev Y., Tulsiani M., Kamath G., Chuzhoy J., Assoc Computing Machinery, 2020, 944–953
Yin Tat Lee, Aaron Sidford, Santosh S. Vempala, Bolyai Society Mathematical Studies, 28, Building Bridges II, 2019, 317
A. V. Gasnikov, D. A. Kovalev, “Gipoteza ob optimalnykh otsenkakh skorosti skhodimosti chislennykh metodov vypukloi optimizatsii vysokikh poryadkov”, Kompyuternye issledovaniya i modelirovanie, 10:3 (2018), 305–314
A. V. Gasnikov, E. A. Gorbunov, D. A. Kovalev, A. A. M. Mokhammed, E. O. Chernousova, “Obosnovanie gipotezy ob optimalnykh otsenkakh skorosti skhodimosti chislennykh metodov vypukloi optimizatsii vysokikh poryadkov”, Kompyuternye issledovaniya i modelirovanie, 10:6 (2018), 737–753
Bubeck S., Lee Y.T., Eldan R., “Kernel-Based Methods For Bandit Convex Optimization”, Stoc'17: Proceedings of the 49Th Annual Acm Sigact Symposium on Theory of Computing, Annual Acm Symposium on Theory of Computing, eds. Hatami H., McKenzie P., King V., Assoc Computing Machinery, 2017, 72–85
E. S. Gorskaya, I. M. Mitricheva (Shitova), V. Yu. Protasov, A. M. Raigorodskii, “Estimating the chromatic numbers of Euclidean space by convex minimization methods”, Sb. Math., 200:6 (2009), 783–801