Abstract:
The paper contains a description of the two-dimensional homology group of a specific surface, which is of interest in connection with the Jacobian conjecture. The self-intersection index and the value of the Chern characteristic of a generator of this group are calculated explicitly.
Citation:
A. G. Vitushkin, “On the homology of a ramified covering over $\mathbb C^2$”, Mat. Zametki, 64:6 (1998), 839–846; Math. Notes, 64:6 (1998), 726–731
\Bibitem{Vit98}
\by A.~G.~Vitushkin
\paper On the homology of a ramified covering over $\mathbb C^2$
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 6
\pages 839--846
\mathnet{http://mi.mathnet.ru/mzm1463}
\crossref{https://doi.org/10.4213/mzm1463}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691264}
\zmath{https://zbmath.org/?q=an:0959.32031}
\elib{https://elibrary.ru/item.asp?id=13276297}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 6
\pages 726--731
\crossref{https://doi.org/10.1007/BF02313030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080436700024}
Linking options:
https://www.mathnet.ru/eng/mzm1463
https://doi.org/10.4213/mzm1463
https://www.mathnet.ru/eng/mzm/v64/i6/p839
This publication is cited in the following 11 articles:
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. I. Introduction”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 213, VINITI RAN, M., 2022, 110–144
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. II. Quantization proof of Bergman's centralizer theorem”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 214, VINITI RAN, M., 2022, 107–126
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. III. Avtomorfizmy, topologiya popolneniya i approksimatsiya”, Algebra, geometriya i kombinatorika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 215, VINITI RAN, M., 2022, 95–128
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. IV. Approksimatsii polinomialnymi simplektomorfizmami”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 216, VINITI RAN, M., 2022, 153–171
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Dzhi-Tai, Venchao Zheng, “Polinomialnye avtomorfizmy, kvantovanie i zadachi vokrug gipotezy Yakobiana. V. Gipoteza Yakobiana i problemy tipa Shpekhta i Bernsaida”, Algebra, geometriya, differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 217, VINITI RAN, M., 2022, 107–137
Alexei Belov, Leonid Bokut, Louis Rowen, Jie-Tai Yu, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 249
G. V. Egorov, “Branched Coverings over $\mathbb C^2$ and the Jacobian Conjecture”, Math. Notes, 76:2 (2004), 161–169
G. V. Egorov, “Example of a Five-Sheeted Exotic Covering over $\mathbb C^2$”, Math. Notes, 71:4 (2002), 486–499
Nemirovski S., “Geometric Methods in Complex Analysis”, European Congress of Mathematics, Vol II, Progress in Mathematics, 202, eds. Casacuberta C., MiroRoig R., Verdera J., XamboDescamps S., Birkhauser Verlag Ag, 2001, 55–64
Stefan Nemirovski, European Congress of Mathematics, 2001, 55
A. G. Vitushkin, “A criterion for the representability of a chain of $\sigma$-processes by a composition of triangular chains”, Math. Notes, 65:5 (1999), 539–547