Abstract:
In the theory of superfluidity and superconductivity, a jump of the free energy was discovered theoretically and was naturally called a zeroth-order phase transition. We present an example of an exactly solvable problem in which such a phase transition occurs.
This publication is cited in the following 37 articles:
Robert B. Mann, Springer Proceedings in Physics, 392, Frontiers of Fundamental Physics FFP16, 2024, 97
Elham Ghasemi, Hossein Ghaffarnejad, Matteo Beccaria, “Thermodynamic Phase Transition of Generalized Ayon-Beato Garcia Black Holes”, Advances in High Energy Physics, 2023 (2023), 1
Liu Y.-P., Cao H.-M., Xu W., “Reentrant Phase Transition With a Single Critical Point of the Hayward-Ads Black Hole”, Gen. Relativ. Gravit., 54:1 (2022), 5
Wan Cong, David Kubizňák, Robert B. Mann, Manus R. Visser, “Holographic CFT phase transitions and criticality for charged AdS black holes”, J. High Energ. Phys., 2022:8 (2022)
Hou J.-X., “Zeroth Order Phase Transition Induced By Ergodicity Breaking in a Mean-Field System”, Eur. Phys. J. B, 94:1 (2021), 6
Berman R.J., “Priors Leading to Well-Behaved Coulomb and Riesz Gases Versus Zeroth-Order Phase Transitions - a Potential-Theoretic Characterization”, Electron. J. Probab., 26 (2021), 145
Pietruszka M.A., “Dynamic Entropy of Human Blood”, Sci Rep, 11:1 (2021), 7587
Farhangkhah N., Dayyani Z., “Extended Phase Space Thermodynamics For Third-Order Lovelock Black Holes With Nonmaximally Symmetric Horizons”, Phys. Rev. D, 104:2 (2021), 024068
Dayyani Z., Sheykhi A., Dehghani M.H., Hajkhalili S., “Critical Behavior and Phase Transition of Dilaton Black Holes With Nonlinear Electrodynamics”, Eur. Phys. J. C, 78:2 (2018), 152
Zangeneh M.K., Dehyadegari A., Sheykhi A., Mann R.B., “Microscopic Origin of Black Hole Reentrant Phase Transitions”, Phys. Rev. D, 97:8 (2018), 084054
Dehyadegari A., Sheykhi A., “Reentrant Phase Transition of Born-Infeld-AdS Black Holes”, Phys. Rev. D, 98:2 (2018), 024011
Ma Yu.-B., Zhang L.-Ch., Cao Sh., Liu T., Geng Sh., Liu Yu., Pan Yu., “Entropy of the Electrically Charged Hairy Black Holes”, Eur. Phys. J. C, 78:9 (2018), 763
Meng K., “Hairy Black Holes of Lovelock-Born-Infeld-Scalar Gravity”, Phys. Lett. B, 784 (2018), 56–61
Maslov V.P., “Numeration as a Factor Relating the Quantum and Classical Mechanics of Ideal Gases”, Russ. J. Math. Phys., 25:4 (2018), 525–530
Matthias Bartelmann, Björn Feuerbacher, Timm Krüger, Dieter Lüst, Anton Rebhan, Andreas Wipf, Theoretische Physik 4 | Thermodynamik und Statistische Physik, 2018, 103
Caldarelli M.M., Christodoulou A., Papadimitriou I., Skenderis K., “Phases of Planar AdS Black Holes With Axionic Charge”, J. High Energy Phys., 2017, no. 4, 001
Kubiznak D., Mann R.B., Teo M., “Black hole chemistry: thermodynamics with Lambda”, Class. Quantum Gravity, 34:6 (2017), 063001
Sherkatghanad Z., Mirza B., Mirzaiyan Z., Hosseini Mansoori S.A., “Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces”, Int. J. Mod. Phys. D, 26:3 (2017)
Dehyadegari A., Sheykhi A., Montakhab A., “Novel Phase Transition in Charged Dilaton Black Holes”, Phys. Rev. D, 96:8 (2017), 084012