Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 6, paper published in the English version journal (Mi mzm14279)  

On Uniqueness Properties of Rademacher Chaos Series

G. A. Karagulyana, V. G. Karagulyanb

a Institute of Mathematics of National Academy of Sciences of Armenia, Yerevan, 0019, Armenia
b Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, 0025, Armenia
Abstract: For a given integer l1, let {mk} be an arbitrary numeration of the integers permitting a dyadic decomposition 2k1+2k2++2ks with sl. We prove that (i) the convergence of a Walsh series kakwmk(x) on a set of measure >124l implies ka2k< and (ii) if it converges to zero on a set of the same measure >124l, then ak=0 for all k1.
Keywords: uniqueness of Walsh series, Rademacher chaos, lacunary series.
Funding agency Grant number
Ministry of Education, Science, Culture and Sports RA, Science Committee 21AG-1A045
The work was supported by the Science Committee of the Republic Armenia in the framework of the research project 21AG-1A045.
Received: 13.07.2023
Revised: 13.07.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 6, Pages 1225–1232
DOI: https://doi.org/10.1134/S0001434623110548
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. A. Karagulyan, V. G. Karagulyan, “On Uniqueness Properties of Rademacher Chaos Series”, Math. Notes, 114:6 (2023), 1225–1232
Citation in format AMSBIB
\Bibitem{KarKar23}
\by G.~A.~Karagulyan, V.~G.~Karagulyan
\paper On Uniqueness Properties of Rademacher Chaos Series
\jour Math. Notes
\yr 2023
\vol 114
\issue 6
\pages 1225--1232
\mathnet{http://mi.mathnet.ru/mzm14279}
\crossref{https://doi.org/10.1134/S0001434623110548}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187883949}
Linking options:
  • https://www.mathnet.ru/eng/mzm14279
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:59
    References:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025