|
Matematicheskie Zametki, 2023, Volume 114, Issue 6, paper published in the English version journal
(Mi mzm14279)
|
|
|
|
On Uniqueness Properties of Rademacher Chaos Series
G. A. Karagulyana, V. G. Karagulyanb a Institute of Mathematics of National Academy of Sciences of Armenia, Yerevan, 0019, Armenia
b Faculty of Mathematics and Mechanics, Yerevan State University, Yerevan, 0025, Armenia
Abstract:
For a given integer l⩾1, let {mk} be an arbitrary numeration of the integers permitting a dyadic decomposition 2k1+2k2+…+2ks with s⩽l. We prove that (i) the convergence of a Walsh series ∑kakwmk(x) on a set of measure >1−2−4l implies ∑ka2k<∞ and (ii) if it converges to zero on a set of the same measure >1−2−4l, then ak=0 for all k⩾1.
Keywords:
uniqueness of Walsh series, Rademacher chaos, lacunary series.
Received: 13.07.2023 Revised: 13.07.2023
Citation:
G. A. Karagulyan, V. G. Karagulyan, “On Uniqueness Properties of Rademacher Chaos Series”, Math. Notes, 114:6 (2023), 1225–1232
Linking options:
https://www.mathnet.ru/eng/mzm14279
|
Statistics & downloads: |
Abstract page: | 59 | References: | 6 |
|