Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 5, Pages 724–740
DOI: https://doi.org/10.4213/mzm14020
(Mi mzm14020)
 

This article is cited in 1 scientific paper (total in 1 paper)

On One Type of Oscillatory Solutions of a Nonautonomous System with Relay Hysteresis

V. V. Yevstafyeva

Saint Petersburg State University
References:
Abstract: We consider an n-dimensional system of first-order ordinary differential equations with a constant matrix having real, simple, and nonzero eigenvalues, with a discontinuous nonlinearity of two-position relay type with positive hysteresis and a continuous bounded perturbation function. We study continuous two-point oscillatory solutions with a certain return period of the representative point to the switching hyperplane in the state space. When solving the Cauchy problem with initial condition at the switching point, we use the fitting method. We construct a system of transcendental equations for the switching times and points. We prove a criterion for the existence and uniqueness of a solution with some fixed return period. For a system in the canonical form with diagonal matrix and with feedback vector of a special form, we obtain conditions for the solvability of a system of transcendental equations for the first switching time for a given return period and formulas for the switching points. For a three-dimensional system, we give a numerical example to illustrate the theoretical results.
Keywords: nonautonomous system, essentially nonlinear system, multidimensional system of ordinary differential equations, discontinuous nonlinearity of relay type with hysteresis, continuous bounded perturbation function, oscillatory solution, return period, switching points and hyperplanes, system of transcendental equations.
Funding agency Grant number
Russian Science Foundation 23-21-00069
This work was financially supported by the Russian Science Foundation, project 23-21-00069, https://rscf.ru/en/project/23-21-00069/.
Received: 30.04.2023
Revised: 26.11.2023
English version:
Mathematical Notes, 2024, Volume 115, Issue 5, Pages 734–747
DOI: https://doi.org/10.1134/S0001434624050080
Bibliographic databases:
Document Type: Article
UDC: 517.925
PACS: N/A
MSC: N/A
Language: Russian
Citation: V. V. Yevstafyeva, “On One Type of Oscillatory Solutions of a Nonautonomous System with Relay Hysteresis”, Mat. Zametki, 115:5 (2024), 724–740; Math. Notes, 115:5 (2024), 734–747
Citation in format AMSBIB
\Bibitem{Yev24}
\by V.~V.~Yevstafyeva
\paper On One Type of Oscillatory Solutions of a~Nonautonomous System with Relay Hysteresis
\jour Mat. Zametki
\yr 2024
\vol 115
\issue 5
\pages 724--740
\mathnet{http://mi.mathnet.ru/mzm14020}
\crossref{https://doi.org/10.4213/mzm14020}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4774034}
\transl
\jour Math. Notes
\yr 2024
\vol 115
\issue 5
\pages 734--747
\crossref{https://doi.org/10.1134/S0001434624050080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85198648796}
Linking options:
  • https://www.mathnet.ru/eng/mzm14020
  • https://doi.org/10.4213/mzm14020
  • https://www.mathnet.ru/eng/mzm/v115/i5/p724
  • This publication is cited in the following 1 articles:
    1. A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “On Motions of a Dynamical System with a Relay Hysteresis”, Rus. J. Nonlin. Dyn., 20:4 (2024), 565–579  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :2
    Russian version HTML:3
    References:43
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025