Abstract:
The inverse problem of determining the solution and the kernel of the integral term in an inhomogeneous two-dimensional integrodifferential wave equation in a rectangular domain is considered. First, the uniqueness of the solution of the direct problem is established using the completeness of the eigenfunction system of the corresponding homogeneous Dirichlet problem for the two-dimensional Laplace operator, and the existence of a solution of the direct problem is proved. Using additional information about the solution of the direct problem, we obtain a Volterra integral equation of the second kind for the kernel of the integral term. The existence and uniqueness of a solution of this equation is proved by the contraction mapping method in the space of continuous functions with a weighted norm.
Citation:
D. K. Durdiev, J. Sh. Safarov, J. Sh. Safarov, “Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain”, Mat. Zametki, 114:2 (2023), 244–259; Math. Notes, 114:2 (2023), 199–211
\Bibitem{DurSaf23}
\by D.~K.~Durdiev, J.~Sh.~Safarov, J.~Sh.~Safarov
\paper Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 2
\pages 244--259
\mathnet{http://mi.mathnet.ru/mzm13686}
\crossref{https://doi.org/10.4213/mzm13686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4665110}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 2
\pages 199--211
\crossref{https://doi.org/10.1134/S0001434623070210}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168615081}
Linking options:
https://www.mathnet.ru/eng/mzm13686
https://doi.org/10.4213/mzm13686
https://www.mathnet.ru/eng/mzm/v114/i2/p244
This publication is cited in the following 4 articles:
J. Sh. Safarov, “Inverse Problem for a Non-Homogeneous Integro-Differential Equation of the Hyperbolic Type”, Vestnik St.Petersb. Univ.Math., 57:1 (2024), 97
D. K. Durdiev, T. R. Suyarov, “Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions”, Vladikavk. matem. zhurn., 26:2 (2024), 5–25
J. Sh. Safarov, U. N. Kalandarov, M. J. Safarova, “Inverse Problem of Determining a Kernel of the Viscoelasticity Equation with Distributed Data in a Limited Domain”, Lobachevskii J Math, 45:7 (2024), 3380
Z. A. Sobirov, “Inverse source problem for the subdiffusion equation on a metric star graph with integral overdetermination condition”, Lobachevskii J Math, 44:12 (2023), 5426